



































| TABLE 2-1         Bonding Properties of Atoms Most           Abundant in Biomolecules |                                   |                          |  |
|---------------------------------------------------------------------------------------|-----------------------------------|--------------------------|--|
| ATOM AND<br>OUTER ELECTRONS                                                           | USUAL NUMBER<br>OF COVALENT BONDS | TYPICAL<br>BOND GEOMETRY |  |
| Ĥ                                                                                     | 1                                 | _ <sup>H</sup>           |  |
| ·ö·                                                                                   | 2                                 | Ä                        |  |
| ·š·                                                                                   | 2, 4, or 6                        | ,s,                      |  |
| ٠Ņ٠                                                                                   | 3 or 4                            | ~ <u>``</u> \            |  |
|                                                                                       | 5                                 | <b>₽</b><br>             |  |
| ٠ċ٠                                                                                   | 4                                 | ,                        |  |



























![](_page_8_Figure_2.jpeg)

![](_page_8_Figure_3.jpeg)

|                |               | DIIDINES       |                |                 |                         |
|----------------|---------------|----------------|----------------|-----------------|-------------------------|
|                |               |                |                | 1.1.1.1         |                         |
| BA             | SES           | ADENINE(A)     | GUANINE(G)     | CYTOSINE(C)     | URACIL(U)<br>THYMINE(T) |
| Nucleosides {  | ∫ in RNA      | Adenosine      | Guanosine      | Cytidine        | Uridine                 |
|                | in DNA        | Deoxyadenosine | Deoxyguanosine | Deoxycytidine   | Deoxythymidine          |
| Nucleotides    | ∫ in RNA      | Adenylate      | Guanylate      | Cytidylate      | Uridylate               |
|                | lin DNA       | Deoxyadenylate | Deoxyguanylate | Deoxycytidylate | Deoxythymidylate        |
| Nucleoside m   | onophosphates | АМР            | GMP            | СМР             | UMP                     |
| Nucleoside di  | phosphates    | ADP            | GDP            | CDP             | UDP                     |
| Nucleoside tri | phosphates    | ATP            | GTP            | СТР             | UTP                     |
| Deoxynucleos   | ide mono-,    |                |                |                 |                         |

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_2.jpeg)

![](_page_9_Figure_3.jpeg)

![](_page_9_Figure_4.jpeg)

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

![](_page_10_Figure_4.jpeg)

![](_page_11_Figure_1.jpeg)

![](_page_11_Figure_2.jpeg)

![](_page_11_Figure_3.jpeg)

| COMMON NAME OF ACID (IONIZED FORM IN PARENTHESE | CHEMICAL FORMULA |                                                                                                                                |  |  |  |
|-------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SATURATED FATTY ACIDS                           |                  |                                                                                                                                |  |  |  |
| Myristic (myristate)                            | C14:0            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>12</sub> COOH                                                                          |  |  |  |
| Palmitic (palmitate)                            | C16:0            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>14</sub> COOH                                                                          |  |  |  |
| Stearic (stearate)                              | C18:0            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>16</sub> COOH                                                                          |  |  |  |
| UNSATURATED FATTY ACIDS                         |                  |                                                                                                                                |  |  |  |
| Oleic (oleate)                                  | C18:1            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> CH=CH(CH <sub>2</sub> ) <sub>7</sub> COOH                                      |  |  |  |
| Linoleic (linoleate)                            | C18:2            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> CH=CHCH <sub>2</sub> CH=CH(CH <sub>2</sub> ) <sub>7</sub> COOH                 |  |  |  |
| Arachidonic (arachidonate)                      | C20:4            | CH <sub>2</sub> (CH <sub>2</sub> ) <sub>4</sub> (CH=CHCH <sub>2</sub> ) <sub>2</sub> CH=CH(CH <sub>2</sub> ) <sub>2</sub> COOF |  |  |  |

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_12_Figure_3.jpeg)

![](_page_12_Figure_4.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_3.jpeg)

(a) NAD<sup>+</sup> (nicotinamide adenine dinucleotide) is reduced to NADH by addition of two electrons and one proton simultaneously. In many biological redox reactions (e.g., succinate to fumarate), a pair of hydrogen atoms (two protons and two electrons) are removed from a molecule. One of the protons and both electrons are transferred to NAD<sup>+</sup>; the other proton is released into solution. (b) FAD (flavine adenine dinucleotide) is reduced to FADH<sub>2</sub> by addition of two electrons and two protons. In this two-step reaction addition of one electron together with one proton first generates a short-lived semiquinone interemediae (not shown), which then accepts a second electron and protons.

## A few universal carriers collect electrons from the stepwise oxidation of various substrates

Cellular oxidation of a nutrient occurs via stepwise reactions (pathways) for efficient energy transduction.
NAD<sup>+</sup>, NADP<sup>+</sup>, FAD, and FMN are universal reversible electron carriers (as coenzymes of various enzymes).
NAD and NADP are dinucleotides able to accept/donate a hydride ion (with 2e<sup>-</sup>) for each round of reduction/oxidation.

NAD (as NAD<sup>+</sup>) usually acts in oxidations and NADP (as NADPH) in reductions.

In each specific NAD- or NADP-containing dehydrogenase, the hydride ion is added/taken stereospecifically from one side (A or B) of the nicotinamide ring (*example of extreme stereospecificity*).

FAD or FMN is able to accept/donate one or two electrons (as hydrogen atom), with absorption maximum for the oxidized and reduced forms being 570 nm and 450 nm respectively (*they also act in such light receptor proteins as cryptochromes and photolyases*). NAD and NADP can easily diffuse out of the enzymes, but FMN and FAD are tightly bound to the enzymes (thus being called *prosthetic groups*, and the complex proteins being called *flavoproteins*).

NADH and FADH<sub>2</sub> will be further oxidized via the respiratory chain for ATP production.

ADP is commonly present in all these universal electron carriers (as well as in Coenzyme A and ATP).

![](_page_15_Picture_6.jpeg)

![](_page_15_Figure_7.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_3.jpeg)