
Ratio based stable in-place merging

Pok-Son Kim1 and Arne Kutzner2

1 Kookmin University, Department of Mathematics, Seoul 136-702, Rep. of Korea
pskim@kookmin.ac.kr

2 Seokyeong University, Department of Computer Science, Seoul 136-704, Rep. of
Korea kutzner@skuniv.ac.kr

Abstract. We investigate the problem of stable in-place merging from
a ratio k = n

m
based point of view where m, n are the sizes of the input

sequences with m ≤ n . We introduce a novel algorithm for this problem
that is asymptotically optimal regarding the number of assignments as
well as comparisons. Our algorithm uses knowledge about the ratio of
the input sizes to gain optimality and does not stay in the tradition of
Mannila and Ukkonen’s work [8] in contrast to all other stable in-place
merging algorithms proposed so far. It has a simple modular structure
and does not demand the additional extraction of a movement imitation
buffer as needed by its competitors. For its core components we give
concrete implementations in form of Pseudo Code. Using benchmarking
we prove that our algorithm performs almost always better than its direct
competitor proposed in [6].
As additional sub-result we show that stable in-place merging is a quite
simple problem for every ratio k ≥

√
m by proving that there exists a

primitive algorithm that is asymptotically optimal for such ratios.

1 Introduction

Merging denotes the operation of rearranging the elements of two adjacent sorted
sequences of size m and n, so that the result forms one sorted sequence of m+n
elements. An algorithm merges two sequences in place when it relies on a fixed
amount of extra space. It is regarded as stable, if it preserves the initial ordering
of elements with equal value.
There are two significant lower bounds for merging. The lower bound for the
number of assignments is m + n because every element of the input sequences
can change its position in the sorted output. As shown e.g. in Knuth [7] the
lower bound for the number of comparisons is Ω(m log(n

m + 1)), where m ≤ n.
A merging algorithm is called asymptotically fully optimal if it is asymptotically
optimal regarding the number of comparisons as well as assignments.
We will inspect the merging problem on the foundation of a ratio based approach.
In the following k will always denote the ratio k = n

m of the sizes of the input
sequences. The lower bounds for merging can be expressed on the foundation of
such a ratio as well. We get Ω(m log(k + 1)) as lower bound for the number of
comparisons and m · (k + 1) as lower bound for the number of assignments.

In the first part of this paper we will show that there is a simple asymptot-
ically fully optimal stable in-place merging algorithm for every ratio k ≥

√
m.

Afterward we will introduce a novel stable in-place merging algorithm that is
asymptotically fully optimal for any ratio k. The new algorithm has a modular
structure and does not rely on the techniques described by Mannila and Ukko-
nen [8] in contrast to all other works ([10,4,2,6]) known to us. Instead it exploits
knowledge about the ratio of the input sizes to achieve optimality. In its core
our algorithm consists of two separated operations named “Block rearrangement”
and “Local merges”. The separation allowed the omitting of the extraction of an
additional movement imitation buffer as e.g. necessary in [6]. For core parts of
the new algorithm we will give an implementation in Pseudo-Code. Some bench-
marks will show that it performs better than its competitor proposed in [6] for
a wide range of inputs.

A first conceptual description of a stable asymptotically fully optimal in-
place merging algorithm can be found in the work of Symvonis [10]. Further work
was done by Geffert et al. [4] and Chen [2] where Chen presented a simplified
variant of Geffert et al’s algorithm. All three publications delivered neither an
implementation in Pseudo-Code nor benchmarks. Recently Kim and Kutzner
[6] published a further algorithm together with benchmarks. These benchmarks
proved that stable asymptotically fully optimal in-place merging algorithms are
competitive and don’t have to be viewed as theoretical models merely.

2 A simple asymptotically optimal algorithm for k ≥
√

m

Algorithm Arguments Comparisons Assignments
Hwang and Lin u, v with |u| ≤ |v| m(t + 1) + n/2t

let where
m = |u| , n = |v| t = blog(n/m)c

(1) - ext. buffer 2m + n
(2) - m rotat. n + m2 + m

Block Swapping u, v with |u| = |v| - 3 |u|
Block Rotation u, v - |u|+ |v|+ gcd(|u| , |v|)

≤ 2(|u|+ |v|)
Binary Search u, x (searched element) blog |u|c+ 1 -
Minimum Search u |u| − 1 -
Insertion Sort u, let m = |u| m(m−1)

2
+ (m− 1) m(m+1)

2
− 1

Table 1. Complexity of the Toolbox-Algorithms

We now introduce some notations that will be used throughout the paper.
Let u and v be two ascending sorted sequences. We define u ≤ v (u < v) iff
x ≤ y (x < y) for all elements x ∈ u and for all elements y ∈ v. |u| denotes the
size of the sequence u. Unless stated otherwise, m and n (m ≤ n) are the sizes

of two input sequences u and v respectively. δ always denotes some block-size
with δ ≤ m.
Tab. 1 contains the complexity regarding comparisons and assignments for six
elementary algorithms that we will use throughout this paper. Brief descriptions
of these algorithms except for “Minimum Search” can be found in [6]. In the case
of “Minimum Search” we assume that u is unsorted, therefore a linear search is
necessary.

First we will now show that there is a simple stable merging algorithm called
Block-Rotation-Merge that is asymptotically fully optimal for any ratio
k ≥

√
m. Afterward we will prove that there is a relation between the number of

different elements in the shorter input sequence u and the number of assignments
performed by the rotation based variant of Hwang and Lin’s algorithm [5].

Algorithm 1: Block-Rotation-Merge (u, v, δ)

1. We split the sequence u into blocks u1u2 . . . udm
δ e so that all sections u2 to

udm
δ e are of equal size δ and u1 is of size mmod δ. Let xi be the last element

of ui (i = 1, · · · ,
⌈

m
δ

⌉
). Using binary searches we compute a splitting of v

into sections v1v2 . . . vdm
δ e so that vi < xi ≤ vi+1(i = 1, · · · ,

⌈
m
δ

⌉
− 1).

2. u1u2 . . . udm
δ ev1v2 . . . vdm

δ e is reorganized to

u1v1u2v2 . . . udm
δ evdm

δ e using
⌈

m
δ

⌉
− 1 many rotations.

3. We locally merge all pairs uivi using
⌈

m
δ

⌉
calls of the rotation based variant

of Hwang and Lin’s algorithm ([5]).

The steps 2 and 3 are interlaced as follows: After creating a new pair uivi (i =
1, · · · ,

⌈
m
δ

⌉
) as part of the second step we immediately locally merge this pair as

described in step 3.

Lemma 1. Block-Rotation-Merge performs m2

2·δ + 2n + 6m + m · δ many
assignments at most if we use the optimal algorithm from Dudzinski and Dydek
[3] for all block-rotations .

Proof. For the first rotation from u1u2 · · ·udm
δ ev1 to u1v1u2 · · ·udm

δ e the al-
gorithm performs |u2| + · · · + |udm

δ e| + |v1| + gcd(|u2| + · · · + |udm
δ e|, |v1|) as-

signments. The second rotation from u2u3 · · ·udm
δ ev2 to u2v2u3 · · ·udm

δ e requires
|u3|+· · ·+|udm

δ e|+|v2|+gcd(|u3|+· · ·+|udm
δ e|, |v2|) assignments, and so on. For

the last rotation from udm
δ e−1udm

δ evdm
δ e−1vdm

δ e to udm
δ e−1vdm

δ e−1udm
δ evdm

δ e
the algorithm requires |udm

δ e|+ |vdm
δ e−1|+ gcd(|udm

δ e|, |vdm
δ e−1|) assignments.

Additionally m
δ (3δ +3δ + δ2) = 6m+m · δ assignments are required for the local

merges. Altogether the algorithm performs δ · ((m
δ − 1) + (m

δ − 2) + · · · + 1) +
n + n + 6m + m · δ = m2

2·δ − m
2 + 2 · n + 6m + m · δ ≤ m2

2·δ + 2 · n + 6m + m · δ
assignments at most. ut

Lemma 2. Block-Rotation-Merge is asymptotically optimal regarding the
number of comparisons.

Corollary 1. If we assume a block-size of b
√

mc then Block-Rotation-Merge
is asymptotically fully optimal for all k ≥

√
m.

So, for k ≥
√

m there is a quite primitive asymptotically fully optimal stable
in-place merging algorithm. In the context of complexity deliberations in the
next section we will rely on the following Lemma.

Lemma 3. Let λ be the number of different elements in u. Then the number of
assignments performed by the rotation based variant of Hwang and Lin’s algo-
rithm is O(λ ·m + n) = O((λ + k) ·m).

Proof. Let u = u1u2 . . . uλ, where every ui(i = 1, · · · , λ) is a maximally sized
section of equal elements. We split v into sections v1v2 . . . vλvλ+1 so that we get
vi < ui ≤ vi+1 (i = 1, · · · , λ). (Some vi can be empty.) We assume that Hwang
and Lin’s algorithm already merged a couple of section and comes to the first
elements of the section ui(i = 1, · · · , λ). The algorithm now computes the section
vi and moves it in front of ui using one rotation of the form · · ·ui . . . uλvi · · · to
· · · viui . . . uλ · · ·. This requires |ui|+ · · ·+ |uλ|+ |vi|+gcd(|ui|+ · · ·+ |uλ|, |vi|) ≤
2(m+|vi|) many assignments. Afterward the algorithm continues with the second
element in ui. Obviously there is nothing to move at this stage because all
elements in ui are equal and the smaller elements from v were already moved
in the step before. Because we have only λ different sections we proved our
conjecture. ut

Corollary 2. Hwang and Lin’s algorithm is fully asymptotically optimal if we
have either k ≥ m or k ≥ λ where λ is the number of different elements in the
shorter input sequence u .

3 Novel asymptotically optimal stable in-place merging
algorithm

We will now propose a novel stable in-place merging algorithm called Stable-
Optimal-Block-Merge that is fully asymptotically optimal for any ratio. No-
table properties of our algorithm are: It does not rely on the block management
techniques described in Mannila and Ukonnen’s work [8] in contrast to all other
such algorithms proposed so far. It degenerates to the simple Block-Rotation-
Merge algorithm for roughly k ≥

√
m/2 . The internal buffer for local merges

and the movement imitation buffer share a common buffer area. The two opera-
tions “block rearrangement” and “local merges” stay separated and communicate
using a common block distribution storage. There is no lower bound regarding
the size of the shorter input sequence.

Algorithm 2: Stable-Optimal-Block-Merge
Step 1: Block distribution storage assignment

Let δ = b
√

mc be our block-size. We split the input sequence u into u = s1ts2u
′

so that s1 and s2 are two sequences of size bm/δc + bn/δc and t is a sequence
of maximal size with elements equal to the last element of s1. We assume that

there are enough elements to get a nonempty u′ and call s1 together with s2 our
block distribution storage (in the following shortened to bd-storage).

Step 2: Buffer extraction

w vts1

(all elements in this area are distinct)

s2 b

elements originating from u

block distribution storage buffer

Fig. 1. Segmentation after the buffer extraction

In front of the remaining sequence u′ we extract an ascending sorted buffer b of
size δ so that all pairs of elements inside b are distinct. Simple techniques how to
do so are proposed e.g. in [9] or [6]. Once more we assume that there are enough
elements to do so. Now let w be the remaining right part of u′ after the buffer
extraction.
The segmentation of our input sequences after the buffer extraction is shown in
Fig. 1.

Step 3: Block rearrangement

w
r−1 wr v1 vbn

δ
cw1 w2

buffer area

≤

(a)

(b) w-blockv-block

<

v-blockw-block

w-block v-block

> (elements exchanged)

v-block

(here used as movement imitation buffer)

first and second section of the block distribution storage

(c)

vbn
δ
c+1

Fig. 2. Graphical remarks to the block rearrangement process

We logically split the sequence wv into blocks of equal size δ as shown in Fig.
2 (a). The two blocks w1 and vbn

δ c+1 are undersized and can even be empty. In
the following we call every block originating from w a w-block and every block

originating from v a v-block. The minimal w-block of a sequence of w-blocks
is always the w-block with the lowest order (smallest elements) regarding the
original order of these blocks.

We rearrange all blocks except of the two undersized blocks w1 and vbn
δ c+1,

so that the following 3 properties hold:
(1) If a v-block is followed by a w-block, then the the last element of the v-block
must be smaller than the first element of the w block (Fig. 2(b)).
(2) If a w-block is followed by a v-block, then the first element of the w-block
must be smaller or equal to the last element of the v-block (Fig. 2(b)).
(3) The relative order of the v-blocks as well as w-blocks stays unchanged.

This rearrangement can be easily realized by “rolling” the w-blocks through
the v-blocks and “drop” minimal w-blocks so that the above properties are ful-
filled. During this rolling the w-blocks stay together as group but they can be
moved out of order. So, due to the need for stability, we have to track their po-
sitions. For this reason we mirror all block replacements in the buffer area using
a technique called movement imitation (The technique of movement imitation is
described e.g. in [10] and [6]). Every time when a minimal w-block was dropped
we can find the position of the next minimal block using this buffer area.
Later we will have to find the positions of w-blocks in the block-sequence created
as output of the rearrangement process. For this purpose we store the positions
of w-blocks in the block distribution storage as follows:
The block distribution storage consist of two sections of size bm/δc+ bn/δc and
the i-th element of the first section together with the i-th element of the second
section belong to the i-th block in the result of the rearrangement process. Please
note that, due to the technique used for constructing the bd-storage, such pairs
of elements are always different with the first one smaller than the second one. If
the i-th block originates from w we exchange the corresponding elements in the
bd-storage otherwise we leave them untouched. Fig. 2(c) shows this graphically.

Step 4: Local merges
We visit every w-block and proceed as follows:
Let p be the w-block to be merged and let q be the sequence of all v-originating
elements immediately to the right of p that are still unmerged. Further let x be
the first element of p.

(1) Using a binary search we split q into q = q1q2 so that we get q1 < x ≤ q2.
It holds |q1| < δ due to the block rearrangement applied before. (2) We rotate
pq1q2 to q1pq2. (3) We locally merge p and q2 by Hwang and Lin’s algorithm,
where we use the buffer area as internal buffer.

This visiting process starts with the rightmost w-block and moves sequen-
tially w-block by w-block to the left. The positions of the w-blocks are detected
using the information hold in the bd-storage. Every time when we locate the
position of a w-block in the bd-storage we bring the corresponding bd-storage
elements back to their original order. So, after finishing all local merges both
sections of the bd-storage are restored to their original form.

Step 5: Final sweeping up
On the left there is a still unmerged sub-sequence s1ts2bw1v

′ where v′ is the

subsection of v that consists of the remaining unmerged elements. We proceed
as follows: (1) We split v′ into v′ = v′1v

′
2 so that v′1 < x ≤ v′2 where x is the last

element of s2. Afterward we rotate bw1v
′
1v

′
2 to v′1bw1v

′
2 and locally merge w1 and

v′2 using Hwang and Lin’s algorithm with the internal buffer. (2) In the same
way we split v′1 into v′ = v′1,1v

′
1,2 so that we get v′1,1 < y ≤ v′1,2 where y is the

last element of s1. We rotate s1ts2v1,1v1,2 to s1v1,1ts2v1,2 and locally merge s1

with v′1,1 and s2 with v1,2’ using the Block-Rotation-Merge algorithm with
a block-size of b

√
mc. (3) We sort the buffer area using Insertion-Sort and

merge it with all elements right of it using the rotation based variant of Hwang
and Lin’s algorithm.

Lack of Space in Step 1:
The inputs are so asymmetric that u′ becomes empty. Using a binary search
we split v into v = v1v2 so that we get v1 < t ≤ v2 and rotate s1ts2v1v2

to s1v1ts2v2. Using the Block-Rotation-Merge algorithm with a block-size
b
√

mc we locally merge s1 with v1 and s2 with v2. If s2 is empty we ignore it
and directly merge s1 with v in the same style.

Extracted buffer smaller than b
√

mc in Step 2:
We assume that we could extract a buffer of size λ with λ < b

√
mc. We change

our block-size δ to b|u| /λc and apply the algorithm as described but with the
modification that we use the rotation based variant of Hwang and Lin’s algorithm
for all local merges.

Corollary 3. Stable-Optimal-Block-Merge is stable.

Theorem 1. The Stable-Optimal-Block-Merge algorithm requires O(m+
n) = O(m · (k + 1)) assignments..

Proof. It is enough to prove that every step is performed with O(m + n) as-
signments. In the first step no assignments occur at all. The buffer extraction in
step 2 requires O(m) assignments, as shown in [6]. In step 3 the “rolling” of the
w-blocks through the v-blocks together with the “dropping” of the minimal w-
blocks requires 3

√
m ·(

√
m+ n√

m
) = O(m+n) assignments. The rotations for the

integrated “movement imitation” contribute O(
√

m·(
√

m+ n√
m

)) = O(m+n) as-
signments. The marking of the positions of the w-blocks in the bd-storage needs
O(

√
m) assignments. So, altogether step 3 requires O(m+n) assignments. In step

4 each w-block rotation requires
√

m+
√

m+gcd(
√

m,
√

m) = 3
√

m assignments
at most. So all w-block rotations need 3

√
m ·

√
m = O(m) assignments. The local

mergings using Hwang and Lin’s algorithm consume 2m + n assignments alto-
gether. The reconstruction of the original order of the exchanged elements in the
bd-storage contributes O(

√
m) assignments. In step 5 the first rotation requires

4
√

m assignments at most and the local merging of w1 and v′2 needs 3
√

m assign-
ments at most. The second rotation requires 3

√
m + n√

m
assignments at most.

The success in step 1 implies that roughly k ≤
√

m/2, so we get k ·
√

m ≤ m.
Further we have bm/δc + bn/δc is roughly equal to (k + 1) ·

√
m = m+n√

m
. So,

according to Lemma 1 each local merging with Block-Rotation-Merge needs
(k
√

m)·k
√

m
2·
√

m
+2 ·n+6k

√
m+ k(

√
m
√

m) ≤ k·m
2 +2n+6m+ k ·m assignments at

most. The buffer sorting using insertion sort contributes O(m) assignments and
the final call of Hwang and Lin’s algorithm requires n + m +

√
m assignments.

So, step 5 needs altogether O(m + n) assignments as well.
In the first exceptional case “Lack of Space in Step 1” we have roughly k ≥

√
m/2

and directly switch to Block-Rotation-Merge. According to Corollary 1
Block-Rotation-Merge is fully asymptotically optimal for such k.
In the second exceptional case “Extracted buffer smaller than b

√
mc” we change

the block-size to b|u| /λc with λ <
√

m and use the rotation based variant of
Hwang and Lin’s algorithm for local merges. A recalculation of the steps 3 to 5,
were we use Lemma 3 in the context of all local merges, proves that the number
of assignments is still O(m + n) . ut

Lemma 4. If k =
∑n

i=1 ki for any ki > 0 and integer n > 0, then
∑n

i=1 log ki ≤
n log(k/n).

Proof. It holds because the function log x is concave. ut

Theorem 2. The Stable-Optimal-Block-Merge algorithm requires
O(m log(n

m + 1)) = O(m log(k + 1)) comparisons.

Proof. As in the case of the assignments it is enough to show that every step
keeps the asymptotic optimality. Step 1 contains one binary search over m
merely. The buffer extraction in step 2 requires m comparisons at most, as shown
in [6]. The rearrangement of all blocks except of the two undersized blocks w1

and vbn
δ c+1 in step 3 requires 2

√
m+ n√

m
comparisons at most. The detection of

the minimal element in the movement imitation buffer demands
√

m ·
√

m many
comparisons at most. In step 4 the binary searches for splitting the q-sequences
cost

√
m · log

√
m comparisons at most. Now let (m1, n1), (m2, n2), · · · , (mr, nr)

be the sizes of all r-groups that are locally merged by Hwang and Lin’s algo-
rithm. According to Lemma 4, Table 1 and since r <

√
m this task requires∑r

i=1(mi(log(ni

mi
) + 1) + mi) =

∑r
i=1(mi log(ni

mi
) + 2mi) ≤

∑r
i=1 mi log(ni

mi
) +

2m =
∑r

i=1(mi log ni − mi log mi) + 2m =
√

m
∑r

i=1(log ni − log mi) + 2m ≤√
m(

√
m log n

r −
√

m log m
r) + 2m ≤ m(log(n

m + 1)) + 2m = O(m log(n
m + 1))

comparisons. The asymptotic optimality in step 5 as well as in the exceptional
case “Lack of Space in Step 1” is obvious due to Lemma 2. The change of the
block-size in the second exceptional case “Extracted buffer smaller than b

√
mc”

triggers a simple recalculation of step 3 and step 4, where we leave the details
to the reader. ut

Corollary 4. Stable-Optimal-Block-Merge is an asymptotically fully op-
timal stable in-place merging algorithm.

Pseudo-code implementations for the core operations “block rearrangement” and
“local merges” are given in Alg. 1 and Alg. 2, respectively. Both code segments
contain calls of the toolbox algorithms mentioned in section 2. The Pseudo-code
definitions for these toolbox algorithms are summarized in Tab. 2.

Pseudo-code Definition Description of the Arguments
Hwang-And-Lin(A, first1, first2, last) u is in A[first1 : first2− 1],

v is in A[first2 : last− 1]
Binary-Search(A, first, last, x) delivers the position of the

first occurrence of x in A[first : last−1]
Minimum(A, pos1, pos2) delivers the index of the minimal element

in A[pos1 : pos2− 1]
Block-Swap(A, pos1, pos2, len) u is in A[pos1 : pos1 + len− 1],

v is in A[pos2 : pos2 + len− 1]
Block-Rotate(A, first1, first2, last) u, v as in Hwang-And-Lin
Exchange(A, pos1, pos2) is equal to Block-Swap(A, pos1, pos2, 1).

Table 2. Pseudo-code Definitions of the Toolbox Algorithms

Algorithm 1 Pseudo-code of the procedure for the block rearrangement

Rearrange-Blocks(A, first1, first2, last, buf, bds1, bds2, blockSize)

1 � w2 . . . wx is in A[first1 : first2− 1], v1 . . . vy−1 is in A[first2 : last− 1]

2 � buffer b is in A[buf : buf +
⌊√

m
⌋
− 1]

3 � bd-storage s{1|2} is in A[bds{1|2} : bds{1|2}+
⌊√

m
⌋

+
⌊
n/
√

m
⌋
− 1]

4
5 bufEnd← buf + (first2− first1) / blockSize
6 minBlock ← first1
7 while first1 < first2
8 do if first2 + blockSize < last and A[first2 + blockSize− 1] < A[minBlock]
9 then Block-Swap(A, first1, first2, blockSize)

10 Block-Rotation(A, buf, buf + 1, bufEnd)
11 if minBlock = first1
12 then minBlock ← first2
13 first2← first2 + blockSize
14 else Block-Swap(A, minBlock, first1, blockSize)
15 Exchange(A, buf, buf + (minBlock − first1) / blockSize)
16 Exchange(A, bds1, bds2)
17 buf ← buf + 1
18 if buf < end
19 then minIndex←Minimum(A, buf, bufEnd)
20 minBlock ← first1 + (minIndex− buf) ∗ blockSize
21 bds1← bds1 + 1; bds2← bds2 + 1
22 first1 = first1 + blockSize

3.1 Optimizations

We now report about several optimizations that help improving the performance
of the algorithm without any impact on its asymptotic properties. The immediate
mirroring of all w-block movements in the movement imitation buffer (occurs in
Step 3) triggers a rotation (line 10 in Alg. 1) every time when a v-block is moved

Algorithm 2 Pseudo-code of the function for local merges

Local-Merges(A, first, last, buf, bds1, bds2, blockSize, numBlocks)

1 � A[first : last− 1] contains all blocks in distributed form
2
3 index← ((last− first) / blockSize)− 1
4 while numBlocks > 0
5 do while A[bsd1 + index] < A[bsd2 + index]
6 do index← index− 1
7 first2← first + ((index + 1) ∗ blockSize)
8 if first2 < last
9 then b← Binary-Search(first2, last, A[first2− blockSize])

10 Block-Rotation(A, first2− blockSize, first2, b)
11 Hwang-Lin(A, b− blockSize, b, last, buf)
12 last← b− blockSize
13 Exchange(A, bds1 + index, bds2 + index)
14 numBlocks← numBlocks− 1; index← index− 1
15 return last

into front of the group of w-blocks. The number of necessary rotations can be
reduced by first counting the number of v-blocks moved into front of the w-
blocks. This counting follows a single update of the movement imitation buffer
if the placement of a minimal w-block happens. In the context of the movement
of v-blocks into front of w-blocks (Step 3) the floating hole technique (for a
description see [4] or [6]) can be applied for reducing the number of assignments.
Similarly the floating hole technique can also be applied during the local merges
(Step 4) by combining the block swap to the internal buffer with the rotation
that moves smaller v-originating elements to the front of the w-block. In the
special case “Extracted buffer smaller then b

√
mc” the sorting of the buffer b in

Step 5 is unnecessary because the buffer is already sorted after Step 3 and stays
unchanged during Step 4. Insertion-Sort can be replace by some more efficient
sorting algorithm. Please note that there is no need for stability in the context
of the buffer sorting because all buffer elements are distinct.

4 Experimental work

We did some experimental work with our algorithm in order to get an impression
of its performance. We compared it with the stable fully asymptotically optimal
algorithm presented in [6] as well as the simple standard algorithm that relies
on external space of size m. The results of our experimental work summarizes
Tab. 3 where every line shows average values for 50 runs with different data. We
took a standard desktop computer with 2GHz processor as hardware platform.
All coding happened in the C programming language. For the measurement
of the number of assignments we applied the optimal block rotation algorithm

n m Stable-O.-B.-Merge SOFSEM 2006 Alg. Linear Standard Alg.
#comp #assign te #comp #assign te #comp #assign te

221 221 5843212 37551852 227 5961524 49666369 335 4194239 8388608 121
221 218 1500433 15866835 100 1505766 17182008 122 2359288 4718592 71
221 215 280611 17350896 87 280412 12681115 68 2129890 4259840 64
221 212 43611 4422493 35 47330 10512479 53 2100804 4202496 63
223 29 8057 16350956 133 8589 38150052 202 8373039 16778240 251
223 26 1200 15459824 131 1271 30749720 161 8234508 16777344 254
223 23 172 11322991 119 170 7535160 68 7572307 16777232 301
223 20 23 4163489 55 24 4163489 55 4225121 16777218 261
te : Execution time in ms, #comp : Number of comp., m, n : Lengths of inp. seq.

Table 3. Practical comparison of various merge algorithms

presented in [3]. Although this algorithm is optimal regarding the number of
assignments it is quite slow in practice due to its high computational demands.
Therefore for the time measurements we applied a block-swap based algorithm
presented e.g. in [1] using identical data.
Regarding the buffer extraction (Step 2) there are several alternatives. The ex-
traction process can be started from the left end as well as from the right end
of the input and we can choose between a binary search and linear search for
the determination of the next element. All 4 possible combinations keep the
asymptotic optimality. However, there is no clear “best choice” among them be-
cause the most advantageous combination can vary depending on the structure
of the input. In the context of the Stable-Optimal-Block-Merge algorithm
we decided for the variant “starting from the left combined with binary search”,
the SOFSEM 2006 algorithm already originally chose “starting from the right
combined with linear search”.
Except for two combinations of input sizes our new algorithm is always faster
than its predecessor. The bad performance in the case (221, 215) reflects the lack
of the implementation of the floating hole technique as mentioned in the section
about optimizations. The application of Block-Rotation-Merge triggers un-
necessary rotations in the case (223, 23). This can be fixed by introduction of a
check whether k ≥ m and a direct switch to the rotation based variant of Hwang
and Lin’s algorithm if true.

5 Conclusion

We investigated the problem of stable in-place merging from a ratio based point
of view by introducing a ratio k = n

m , where m,n are the sizes of the input
sequences with m ≤ n. We could show that there is a simple asymptotically fully
optimal (optimal regarding the number of comparisons as well as assignments)
stable in-place merging algorithm for any ratio k ≥

√
m.

In the second part of this paper we introduced a novel asymptotically fully
optimal stable in-place merging algorithm which is constructed on the founda-
tion of deliberations regarding the ratio of the input sizes. Highlights of this

algorithm are: It has a modular structure and does not rely on techniques de-
scribed by Mannila and Ukkonen [8] in contrast to all its known competitors
([10,4,6]). The tasks “block-distribution” and “local block mergings” are modular
separated. As side effect they can share a common buffer area and the extrac-
tion of a separated movement imitation buffer is not necessary. The algorithm
demands no lower bound for the size of the shorter input sequence (32 elements
in case of the alg. in [4] and 10 elements for the alg. in [6]).
Our algorithm performs for a wide range of inputs remarkably better than its
direct competitor presented in [6]. There is a superiority in particular for sym-
metrically sized inputs, a fact that is of importance in the context of the Merge-
sort algorithm.
The number of comparisons and assignments are good measurements for the
efficiency of merging algorithms. However, the impact of other operations as e.g.
numerical calculations and index comparisons deserves investigation as well. As
motivation we would like to refer to a well known effect with the optimal block-
rotation algorithm introduced by Dudzinski and Dydek in [3]. Their algorithm
is optimal regarding the number of assignments but has a bad performance due
to a included computation of a greatest common divisor. For our further work
we plan to include deliberations regarding such so far uncounted operations.

References

1. J. Bentley. Programming Pearls. Addison-Wesley, Inc, 2nd edition, 2000.
2. J. Chen. Optimizing stable in-place merging. Theoretical Computer Science,

302(1/3):191–210, 2003.
3. K. Dudzinski and A. Dydek. On a stable storage merging algorithm. Information

Processing Letters, 12(1):5–8, February 1981.
4. V. Geffert, J. Katajainen, and T. Pasanen. Asymptotically efficient in-place merg-

ing. Theoretical Computer Science, 237(1/2):159–181, 2000.
5. F.K. Hwang and S.Lin. A simple algorithm for merging two disjoint linearly ordered

sets. SIAM J. Comput., 1(1):31–39, 1972.
6. Pok-Son Kim and Arne Kutzner. On optimal and efficient in place merging. In Jirí

Wiedermann, Gerard Tel, Jaroslav Pokorný, Mária Bieliková, and Julius Stuller,
editors, SOFSEM 2006, volume 3831 of Lecture Notes in Computer Science, pages
350–359. Springer, 2006.

7. D. E. Knuth. The Art of Computer Programming, volume Vol. 3: Sorting and
Searching. Addison-Wesley, 1973.

8. H. Mannila and Esko Ukkonen. A simple linear-time algorithm for in situ merging.
Information Processing Letters, 18:203–208, 1984.

9. L. T. Pardo. Stable sorting and merging with optimal space and time bounds.
SIAM Journal on Computing, 6(2):351–372, June 1977.

10. A. Symvonis. Optimal stable merging. Computer Journal, 38:681–690, 1995.

