
A Simple Algorithm for Stable Minimum Storage
Merging

Pok-Son Kim1? and Arne Kutzner2

1 Kookmin University, Department of Mathematics, Seoul 136-702, Rep. of Korea
pskim@kookmin.ac.kr

2 Seokyeong University, Department of E-Business, Seoul 136-704, Rep. of Korea
kutzner@skuniv.ac.kr

Abstract. We contribute to the research on stable minimum storage
merging by introducing an algorithm that is particularly simply struc-
tured compared to its competitors. The presented algorithm performs
O(m log(n

m
+ 1)) comparisons and O((m + n) log m) assignments, where

m and n are the sizes of the input sequences with m ≤ n. Hence, ac-
cording to the lower bounds of merging the algorithm is asymptotically
optimal regarding the number of comparisons.
As central new idea we present a principle of symmetric splitting, where
the start and end point of a rotation are computed by a repeated halving
of two search spaces. This principle is structurally simpler than the prin-
ciple of symmetric comparisons introduced earlier by Kim and Kutzner.
It can be transparently implemented by few lines of Pseudocode.
We report concrete benchmarks that prove the practical value of our
algorithm.

1 Introduction

Merging denotes the operation of rearranging the elements of two adjacent sorted
sequences of size m and n, so that the result forms one sorted sequence of m+n
elements. An algorithm merges two adjacent sequences with minimum storage
[1] when it requires O(log2(m + n)) bits additional space at most. It is regarded
as stable, if it preserves the initial ordering of elements with equal value.
There are two significant lower bounds for merging. The lower bound for the
number of assignments is m + n because every element of the input sequences
can change its position in the sorted output. As shown by Knuth in [1] the lower
bound for the number of comparisons is Ω(m log(n

m + 1)), where m ≤ n.
The Recmerge algorithm of Dudzinski and Dydek [2] and the Symmerge al-
gorithm of Kim and Kutzner [3] are two minimum storage merging algorithms
that have been proposed in the literature so far. Both algorithms are asymptot-
ically optimal regarding the number of comparisons and resemble structurally.
They perform the merging by a binary partitioning of both input sequences
? This work was supported by the Kookmin University research grant in 2006.

which operates as the foundation of a rotation that is followed by two recursive
calls. The algorithm proposed here operates similar, however the partitioning
is performed by a novel technique called symmetric splitting. This partitioning
technique is structurally simpler than the older ones, because it neither requires
the detection of the shorter input sequence nor a binary search as sub operation.
Further there is no static selection of any pivot element or centered subsequence.
The simplicity leads to a highly transparent and well understandable algorithm
that can be implemented in a few lines of Pseudocode. Despite its simplicity our
algorithm is asymptotically optimal regarding the number of comparisons and
requires O((m + n) log m) assignments.
Another class of merging algorithms is the class of in place merging algorithms,
where the external space is restricted to a constant amount merely. Recent work
in this area are the publications [4–7], that describe algorithms which are all
asymptotically optimal regarding the number of comparisons as well as assign-
ments. However, these algorithms are structurally quite complex and rely heavily
on other concepts, as e.g. Kronrod’s idea of an internal buffer [8], Mannila and
Ukkonen’s technique for block rearrangements [9] and Hwang and Lin’s merging
algorithm [10]. We included the stable in place merging algorithm proposed in
[7] into our benchmarking in order to give an impression of the performance
behavior of the different approaches.
We will start with a formal definition of our algorithm together with the pre-
sentation of a corresponding Pseudocode implementation. Afterwards we will
prove that our algorithm is stable, minimum storage and asymptotically opti-
mal regarding the number of comparisons. In a benchmark section we show that
our algorithm performs well compared to its competitors. We will finish with a
conclusion, where we give some ideas for further research.

2 Formal Definition / Pseudocode Implementation

Let u and v be two adjacent ascending sorted sequences. We define u ≤ v (u < v)
iff x ≤ y (x < y) for all elements x ∈ u and for all elements y ∈ v.
The Principle of Symmetric Splitting
The algorithm presented her relies on a quite simple idea, the principle of sym-
metric splitting. Informally this principle can be described as follows:
Let u and v be our two input sequences. By a repeated halving of two search
spaces we compute separations u ≡ u′u′′ and v ≡ v′v′′ so that we get u′′ > v′

and u′ <= v′′. To do so we start with u and v as our initial search spaces and
operate as follows:
We split our search spaces at their middle elements and compare these two el-
ements. Depending on the result of this comparison we symmetrically shorten
these spaces either to the outside or to the inside starting at the respective mid-
dle elements. In this way we repeatedly halve our search spaces until these are
reduced to single points. These points then indicate the borders of a rotation.
Because of this principle of splitting our algorithm is called Splitmerge.

2

Case a: x ≤ y

u1

u2

u21 u22x

(1) Splitting

u3 v1

v2

v21 y v22 v3

>

≤

u1

u2

u22x u3 v1

v2

v21 y v3

>

≤

u1

u2

u21 x u3 v1

v2

y v22 v3

>

≤

Case b: x > y

u1 x u3 v1 y v3

otherwise otherwise

if x is marked u3-belonging if y is marked v1-belonging
(2) Rotation

u1 v1 y x u3 v3

right recursionleft recursion

if x is marked u1-belongingif y is marked v3-belonging

(3)

Here we assume that x is marked u3-belonging and y is marked v1-belonging

Recursive Calls

Fig. 1. Graphical description of the Splitmerge algorithm

Definition of the Splitmerge Algorithm
We now give a formal definition of our merging process, where Fig. 1 contains
an additional graphical description.

Initially we decompose u into u1u2u3 with u2 ≡ u and u1 as well as u3 is empty.
Just the same way we decompose v into v1v2v3 with v2 ≡ v and v1 as well as v3

is empty.
(1) We split u2 into u21xu22, so that |u21| = |u22| or |u21| = |u22| + 1 and we
split v2 into v21yv22, so that |v21| = |v22| or |v21| = |v22|+ 1.

3

Algorithm 1 Splitmerge Algorithm

SplitMerge(A, first1, first2, last)

� u is in A[first1 : first2− 1], v is in A[first2 : last− 1]
1 if first1 ≥ first2 or first2 ≥ last
2 then return
3
4 l← first1; r ← first2; l′ ← first2; r′ ← last
5 repeat if l < r
6 then m← (l + r)/2
7 if l′ < r′

8 then m′ ← (l′ + r′)/2
9

10 if A[m] ≤ A[m′]
11 then l← m + 1; r′ ← m′

12 else l′ ← m′ + 1; r ← m
13 until l ≥ r and l′ ≥ r′

14
15 Rotate(A, r, first2, l′)
16 SplitMerge(A, first1, r, r + r′ − first2)
17 SplitMerge(A, l + l′ − first2, l′, last)

If x <= y then

(a) If u22 is nonempty, then we extend u1 to u1u21x and we reduce u2

to u22, otherwise we extend u1 to u1u21, set u2 ≡ x and mark x as
u1-belonging.
If v21 is nonempty, then we extend v3 to yv22v3 and we reduce v2

to v21, otherwise we extend v3 to v22v3, set v2 ≡ y and mark y as
v3-belonging.

otherwise
(b) If u21 is nonempty, then we extend u3 to xu22u3 and we reduce u2

to u21, otherwise we extend u3 to u22u3, set u2 ≡ x and mark x as
u3-belonging.
If v22 is nonempty, then we extend v1 to v1v21y and we reduce v2

to v22, otherwise we extend v1 to v1v21, set v2 ≡ y and mark y as
v1-belonging.

We continue the above splitting until x and y are marked.

(2) If x is marked u3-belonging, then let u′
1 ≡ u1 and u′

3 ≡ xu3 else let u′
1 ≡ u1x

and u′
3 ≡ u3. If y is marked v1-belonging then let v′1 ≡ v1y and v′3 ≡ v3 else let

v′1 ≡ v1 and v′3 ≡ yv3. We rotate u′
1u

′
3v

′
1v

′
3 to u′

1v
′
1u

′
3v

′
3.

(3) We recursively merge u′
1 with v′1 and u′

3 with v′3, where we shorten v′1 to v1

in the case that y is marked v3-belonging and we shorten u′
3 to u3 in the case

that x is marked u1-belonging.

4

x

x is u1-belonging
l r
m

l← m + 1

r ← m

x

l

r
m

x

l
r
m

x is u3-belonging

r ← m

l← m + 1
x is u1-belonging

x

l

r
m

and x is u3-belonging

(Line 11)

(Line 12) (Line 11)

(Line 12)

Fig. 2. The meaning of the variables l and r in the case l ≥ r

Pseudocode Implementation of Splitmerge
A Pseudocode implementation for the above algorithm is given in Alg. 1, where
the code notation is taken from [11]. The following remarks shall ease the un-
derstanding of the correspondence between Pseudocode and formal definition:
The inputs u and v are passed in A[first1 : first2− 1] and A[first2 : last− 1],
respectively. The symmetric splitting happens in the code section from line 4 to
line 13. In the case of l < r the subsequence u1 is in A[first1 : l − 1], u2 is in
A[l : r− 1] and u3 is in A[r : first2− 1]. m holds the index of the element x, i.e.
A[m] = x. In the case of l ≥ r the search space u2 has been reduced to x merely
and we have u1 in A[first1 : m− 1], u3 in A[m + 1 : first2− 1]. l together with
r are now used to store markings as shown in Fig. 2. In the same way l′ and r′

store the splitting into v1, v2, v3 or marking information. m′ is the index of y.
The lines 15 to 17 contain the rotation and the recursive calls.

3 Stability, Minimum Storage Property, Complexity

Lemma 1. During the splitting process u1 ≤ v3 and u3 > v1 always hold.

Proof. At the beginning of the splitting u1, u3, v1, v3 are all empty. So the prop-
erties trivially hold. In the case of x ≤ y we have u21x ≤ yv22, so after the
extension step we preserve u1 ≤ v3 (u3 and v1 stay untouched). In the other
case we have xu22 > v21y, so we preserve u3 > v1 (u1 and v3 stay untouched).

ut

Additionally the following holds: If y is marked v1-belonging, we have u3 > v1y. If
x is marked u3-belonging, we have xu3 > v1 or even xu3 > v1y if y is additionally
marked v1-belonging.

Corollary 1. Splitmerge is stable.

Lemma 2. The recursion depth is limited by min{blog mc+ blog nc ,m− 1}

5

m,n

≤ m,≤ n/2

≤ m,≤ 1

blog nc
≤ m/2,≤ n

≤ 1,≤ n

blog mc

≤ 1,≤ n/2

≤ 1,≤ 1

≤ m/2,≤ 1
blog mc

blog nc

Fig. 3. Recursion Depth

Proof. We prove both upper bounds separately.
(1) After the splitting (step (2) in the formal definition) we get either |u′

3| ≤ m/2
and |v′1| ≤ n/2 or |u′

1| ≤ m/2 and |v′3| ≤ n/2. This in turn implies (≤ m/2,≤ n)
and (≤ m,≤ n/2) as sizes of the two recursive calls. Hence according to figure 3
the recursion depth is limited by blog mc+ blog nc.
(2) u′

1 ≡ u implies that we did not touch the (b)-alternative during the splitting.
This in turn implies that v′1 is empty. In the opposite case (u′

3 ≡ u) we have to
distinguish two alternatives: Either we did not touch the (a)-alternative and so
v′3 is empty or we touched the (a)-alternative with empty u22 as well as empty
u21 and marked x as u1-belonging. In the latter case we get a recursion where
u′

3 is shorten by one element. So the shorter side loses at least one element with
every successful recursive invocation and the overall recursion depth is limited
by m− 1. ut

Since m ≤ n, the following corollary holds:

Corollary 2. Splitmerge is a minimum storage algorithm.

m(= m
0
1) n(= n

0
1)recursion level 0

m − 1(= m
1
2)1(= m

1
1) n

1
1 n

1
2recursion level 1

m − 21 n
2
1 n

2
2recursion level 2

m − 31 n
3
2n

3
1

recursion level 3

m − 41 n
4
1 n

4
2

m − (m − 1)1 n
m−1
1 n

m−1
2recursion level m − 1

Fig. 4. Maximum spanning case

Complexity
Unless stated otherwise, let us denote m = |u|, n = |v| with m ≤ n and let

6

k = blog mc + 1 if 2k−1 < m < 2k or k = log m if m = 2k. Further mi
j and ni

j

denote sizes of sequences merged on the ith recursion level (initially m0
1 = m

and n0
1 = n).

Lemma 2 shows that the recursion depth is limited by m− 1. We will now con-
sider the relationship between m and n for the maximum spanning case, the case
where the recursion depth is m − 1. Here (m, n) can be partitioned to either
(1 (= m1

1), n1
1)) and (m−1 (= m1

2), n1
2) or (m−1 (= m1

1), n1
1) and (1 (= m1

2), n1
2))

merely. If there are other partitions with 1 < m1
1, m1

2 < m − 1, then the algo-
rithm may reach at most the recursion depth m− 2 (= m− 2− 1 + 1). Without
loss of generality we suppose that (m, n) is partitioned to (1 (= m1

1), n1
1)) and

(m − 1 (= m1
2), n1

2) on recursion level 1. Since the Splitmerge algorithm ap-
plies the symmetric splitting principle, it must be satisfied that n1

1 ≥ n− n
2blog mc

and n1
2 < n

2blog mc (if m = 2k, then n1
2 < n

2blog mc = n
m). Further if m − 1 >

n1
2, the recursion depth would be smaller than m − 1. Thus m − 1 ≤ n1

2 .
Here m − 1 ≤ n1

2 and n1
2 < n

2blog mc implies 2blog mc · (m − 1) < n. Sup-
pose that, just as on the first recursion level, (m − 1 (= m1

2), n1
2) is again

partitioned to (1, n2
1)) and (m − 2, n2

2) on the second recursion level. Then

n2
1 ≥ n

2blog mc − n
2blog mc·2blog(m−1)c , n2

2 <
n

2blog mc

2blog(m−1)c = n
2blog mc·2blog(m−1)c and

m − 2 ≤ n2
2. Thus from m − 2 ≤ n2

2 and n2
2 < n

2blog mc·2blog(m−1)c it holds
2blog mc · 2blog(m−1)c · (m − 2) < n. On the ithrecursion level, suppose (m −
(i − 1) (= mi−1

2), ni−1
2) is partitioned to (1, ni

1) and (m − i, ni
2). Then ni

1 ≥
n

2blog mc·2blog(m−1)c···2blog(m−i+2)c − n
2blog mc·2blog(m−1)c···2blog(m−i+2)c·2blog(m−i+1)c , ni

2 <
n

2blog mc·2blog(m−1)c···2blog(m−i+2)c

2blog(m−i+1)c = n
2blog mc·2blog(m−1)c···2blog(m−i+2)c·2blog(m−i+1)c and

m − i ≤ n
2blog mc·2blog(m−1)c···2blog(m−i+2)c·2blog(m−i+1)c i. e. 2blog mc · 2blog(m−1)c · · ·

2blog(m−i+1)c · (m− i) < n, and so on. Hence, to reach the recursion depth m−1,
we need the assumption 2blog mc · 2blog(m−1)c · 2blog(m−2)c · · · 2blog 1c < n and can
state the following theorem:

Theorem 1. If the Splitmerge algorithm reaches the recursion level m − 1
for two input sequences of sizes m,n (m ≤ n), then n > 2blog mc · 2blog(m−1)c ·
2blog(m−2)c · · · 2blog 1c.

We will now investigate the worst case complexity of the Splitmerge algo-
rithm regarding the number of comparisons and assignments. Fig. 4 shows the
partitions in the maximum spanning case. Note that on the recursion level i, a
sequence of length mi

1 = 1 (mi
2 = m− i) is merged with a sequence of length ni

1

(ni
2).

Lemma 3. ([2] Lemma 3.1) If k =
∑2i

j=1 kj for any kj > 0 and integer i ≥ 0,

then
∑2i

j=1 log kj ≤ 2i log(k/2i).

Theorem 2. The Splitmerge algorithm needs O(m log(n/m + 1)) compar-
isons.

7

m(= m
0
1) n(= n

0
1)recursion group 0

m − 1(= m
1
2)1(= m

1
1) n

1
1 n

1
2recursion group 1

m − 21 n
2
1 n

2
2

recursion group 2
m − 31 n

2
4n

2
3

recursion group 3

m − 41 n
3
1 n

3
2

...

m − 51 n
3
3 n

3
4

m − 61 n
3
5 n

3
6

m − 71 n
3
7 n

3
8

...

... ...

...

m − (m − 1)1 n
k

2k
−1

n
k

2k

recursion group k

Fig. 5. Construction of recursion groups

Proof. Lemma 2 shows that the recursion depth is limited by m− 1 (Note that
if m = 2kthen m − 1 = 20 + 21 + 22 + · · · + 2k−1 = 20 + 21 + 22 + · · · +
2log m−1). We group the recursion levels into k + 1 recursion groups, say recur-
sion group 0, recursion group 1, · · ·, recursion group k, so that each recursion
group i (i = 1, 2, · · · , k) holds at most 2i−1 recursion levels (see Fig. 5). Till now
mi

j and ni
j denoted the lengths of sequences merged on the ith recursion level.

From now on we change the meaning of indexes so that mi
j and ni

j denote the
lengths of sequences merged on the ith recursion group. Then there are at most
2ipartitions in each recursion group i (i = 1, 2, · · · , k), say (mi

1, ni
1), (mi

2, ni
2), · · ·

(mi
2i , ni

2i). Thus the number of comparisons for symmetric splitting with the
recursion group 0 is equal to blog nc + 1≤ blog(m + n)c + 1. For the recur-
sion group 1 we need

⌊
max(log m1

1, log n1
1)

⌋
+ 1 +

⌊
max(log m1

2, log n1
2)

⌋
+ 1≤

log(m1
1 + n1

1) + 1 + log(m1
2 + n1

2) + 1 comparisons, and so on. For the recur-
sion group i we need at most

∑2i

j=1 log(mi
j + ni

j) + 2i comparisons. Since for

each recursion group i (i = 1, 2, · · · , k)
∑2i

j=1(m
i
j + ni

j) ≤ m + n, it holds∑2i

j=1 log(mi
j + ni

j) + 2i ≤ 2i log((m + n)/2i) + 2i by Lemma 3. Note the fol-
lowing special case: if each merging of subsequences triggers two nonempty re-
cursive calls, the recursion level becomes exactly k and recursion groups and
recursion levels are identical. In this case each ith recursion level comprises
2i(i = 0, 1, . . . , k) subsequence mergings and for each recursion group (level)
i = 0, 1, . . . , k, it holds

∑2i

j=1(m
i
j + ni

j) = m + n. Therefore we need at most∑2i

j=1 log(mi
j + ni

j) + 2i ≤ 2i log((m + n)/2i) + 2i comparisons as well. So the
overall number of comparisons for all k + 1 recursion groups is not greater than∑k

i=0(2
i + 2i log((m + n)/2i)) = 2k+1 − 1 + (2k+1 − 1) log(m + n) −

∑k
i=0 i2i.

Since
∑k

i=0 i2i = (k − 1)2k+1 + 2, the Splitmerge algorithm needs at most
2k+1 − 1 + (2k+1 − 1) log(m + n)− (k− 1)2k+1 − 2 = 2k+1 log(m + n)− k2k+1 +

8

n, m i St.-In-Pl.-Merge Recmerge Symmerge Splitmerge
#comp te #comp te #comp te #comp te

223 224 25193982 6774 18642127 12864 21285269 11841 21986651 11587
221 222 6307320 1652 4660230 2457 5320495 2093 5496000 2128
219 220 1582913 395 1165009 402 1329813 359 1373814 349
219 216 1854321 406 962181 311 863284 241 837843 216
219 212 2045316 307 263410 289 196390 196 119072 187
219 28 1225279 97 38401 283 27917 164 11478 159
219 24 1146326 107 4409 276 1477 83 927 60
219 21 786492 34 687 556 55 16 91 14

n, m : Lengths of input sequences (m = n) i : Number of different input elements
te : Execution time in ms, #comp : Number of comparisons

Table 1. Runtimes of different merging algorithms

2k+2 − log(m + n)− 3 = 2m(log m+n
m + 2)− log(m + n)− 3 = O(m log(n

m + 1))
comparisons. ut

Corollary 3. The Splitmerge algorithm is asymptotically optimal regarding
the number of comparisons.

Regarding the sizes of merged sequences theorem 2 states
∑2i

j=1(m
i
j+ni

j) ≤ m+n
for all recursion groups i (i = 0, 1, · · · , k). Hence, if we take the optimal rotation
algorithm proposed in [2], we perform O(m + n) assignments on every recursion
group. Because we have at most k + 1 recursion groups the following theorem
holds:

Theorem 3. The Splitmerge algorithm needs O((m+n) log m) assignments.

4 Experimental Work / Benchmarking

We did some benchmarking for the Splitmerge algorithm, in order to get an
impression of its practical value. We compared our algorithm with Dudzinsky and
Dydek’s Recmerge [2] algorithm, Kim and Kutzner’s Symmerge [3] algorithm
and the asymptotically optimal in place merging algorithm proposed in [7]. For
rotations we generally used the rotation algorithm proposed in [2] that is optimal
with respect to the number of assignments. Table 1 contains a summary of our
results. Each entry shows a mean value of 30 runs with different random data.
We took a state of the art hardware platform with 2 Ghz processor speed and
512MB main memory, all coding was done in the C programming language, all
compiler optimizations had been switched of.
The benchmarks show that Splitmerge can fully compete with Recmerge and
Symmerge. Please note, that despite a slightly higher number of comparisons
our algorithm performs a bit better than its two sisters. This seems to be due

9

to Splitmerge’s simpler structure. The second column of Table 1 shows the
number of different elements in both input sequences. Regarding their runtime
all algorithms can take more or less profit of a decreasing number of different
elements in the input sequences. However, the effect is particular well visible
with Splitmerge.

5 Conclusion

We presented a simply structured minimum storage merging algorithm called
Splitmerge. Our algorithm relies on a novel binary partition technique called
symmetric splitting and has a short implementation in Pseudcode. It requires
O(m log(n

m +1)) comparisons and O((m+n) log m) assignments, so it is asymp-
totically optimal regarding the number of comparisons. Our benchmarking proved
that it is of practical interest.
During our benchmarking we observed that none of the investigated algorithms
could claim any general superiority. We could always find input sequences so
that a specific algorithm performed particularly well or bad. Nevertheless, we
could recognize criteria that indicated the superiority of a specific algorithm for
specific inputs. For example Splitmerge performs well if we have only few dif-
ferent elements in our input sequences. We plan more research on this topic in
order to develop guidelines for a clever algorithm selection in the case of merging.

References

1. Knuth, D.E.: The Art of Computer Programming. Volume Vol. 3: Sorting and
Searching. Addison-Wesley (1973)

2. Dudzinski, K., Dydek, A.: On a stable storage merging algorithm. Information
Processing Letters 12 (1981) 5–8

3. Kim, P.S., Kutzner, A.: Stable minimum storage merging by symmetric compar-
isons. In Albers, S., Radzik, T., eds.: Algorithms - ESA 2004. Volume 3221 of
Lecture Notes in Computer Science., Springer (2004) 714–723

4. Symvonis, A.: Optimal stable merging. Computer Journal 38 (1995) 681–690
5. Geffert, V., Katajainen, J., Pasanen, T.: Asymptotically efficient in-place merging.

Theoretical Computer Science 237 (2000) 159–181
6. Chen, J.: Optimizing stable in-place merging. Theoretical Computer Science 302

(2003) 191–210
7. Kim, P.S., Kutzner, A.: On optimal and efficient in place merging. In Wiedermann,

J., Tel, G., Pokorný, J., Bieliková, M., Stuller, J., eds.: SOFSEM 2006. Volume 3831
of Lecture Notes in Computer Science., Springer (2006) 350–359

8. Kronrod, M.A.: An optimal ordering algorithm without a field operation. Dokladi
Akad. Nauk SSSR 186 (1969) 1256–1258

9. Mannila, H., Ukkonen, E.: A simple linear-time algorithm for in situ merging.
Information Processing Letters 18 (1984) 203–208

10. Hwang, F., S.Lin: A simple algorithm for merging two disjoint linearly ordered
sets. SIAM J. Comput. 1 (1972) 31–39

11. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. 2nd
edn. MIT Press (2001)

10

