On Optimal and Efficient in Place Merging

Pok-Son Kim'* and Arne Kutzner?

! Kookmin University, Department of Mathematics, Seoul 136-702, Rep. of Korea
pskim@kookmin.ac.kr

2 Seokyeong University, Department of E-Business, Seoul 136-704, Rep. of Korea
kutzner@skuniv.ac.kr

Abstract. We introduce a new stable in place merging algorithm that
needs O(mlog(2+1)) comparisons and O(m+n) assignments. According
to the lower bounds for merging our algorithm is asymptotically optimal
regarding the number of comparisons as well as assignments. The stable
algorithm is developed in a modular style out of an unstable kernel for
which we give a definition in pseudocode.

The literature so far describes several similar algorithms but merely as
sophisticated theoretical models without any reasoning about their prac-
tical value. We report specific benchmarks and show that our algorithm
is for almost all input sequences faster than the efficient minimum stor-
age algorithm by Dudzinski and Dydek. The proposed algorithm can be
effectively used in practice.

1 Introduction

Merging denotes the operation of rearranging the elements of two adjacent sorted
sequences of size m and n, so that the result forms one sorted sequence of m+n
elements. An algorithm merges two sequences in place when it needs O(1) bits
additional space. It is regarded as stable, if it preserves the initial ordering of
elements with equal value.

There are two significant lower bounds for merging. The lower bound for the
number of assignments is m + n because every element of the input sequences
can change its position in the sorted output. As shown by Knuth in [1] the lower
bound for the number of comparisons is £2(mlog(Z + 1)), where m < n.

So far there are three publications about optimal stable in place merging. The
work of Symvonis [2] shows how to get an optimal algorithm by combining sev-
eral given concepts but contains no information about the involved asymptotic
constants or implementation aspects. Geffert et. all present in [3] a rather com-
plex algorithm together with its asymptotic constants, but there are no notes
regarding any successful implementation or benchmarking. Chen [4] simplified
Geffert’s algorithm for the price of slightly worse asymptotic constants but also
without any remarks about a concrete implementation. All three publications

* This work was supported by the Kookmin University research grant in 2005.

have some resemblance. They take the algorithm from Mannila and Ukkonen [5]
as starting point, rely on the concept of an internal buffer introduced by Kron-
rod in [6] and develop a stable algorithm out of an unstable one. We will follow
this path but with the focus on an improved stable algorithm as well as concrete
benchmarking. The proposed stable algorithm can be effectively used in practice
as shown by the fact that it can compete with the algorithm of Dudzinski and
Dydek [7] that is used as foundation of the merge_without_buffer function
contained in the C++ Standard Template Libraries (STL) [8].

Significant older works in the area of in place merging are the publications of
Pardo [9], Salowe and Steiger [10] and Huang and Langston [11]. All algorithms
introduced there are asymptotically optimal regarding the number of assign-
ments, but lack in meeting the lower bound for comparisons. Another class of
merging algorithms are the minimum storage algorithms presented in [7] and [12]
which both rely on O(log?(m-+n)) bits of extra storage. The latter two algorithms
are effective in practice and simply structured, but they are not asymptotically
optimal regarding the number of assignments.

We will begin with the introduction of our notation and some toolbox algorithms,
followed by the presentation of an unstable core algorithm. Afterwards the un-
stable core algorithm is extended to an unstable in place algorithm which in turn
is extended to a stable in place algorithm. We will report some benchmarks and
finish with a short conclusion.

2 Notation / Algorithm Toolbox

We now introduce some notations that we will use throughout the paper. Let
u and v two ascending sorted sequences. We define v < v (u < v) iff. z <y
(x < y) for all elements x € u and for all elements y € v. |u| denotes the size of
the sequence u. Unless stated otherwise, m and n (m < n) are the sizes of two
input sequences u and v respectively.

We will use six other algorithms as subcomponents. We now briefly introduce
these algorithms and their complexity (A summary is given in Tab. 1):

(1) Hwang and Lin [13] introduced a merging-algorithm that is optimal regarding
the number of comparisons as well as assignments. Unfortunately their algorithm
is not in-place, it relies on an external buffer of size m when the merging shall
be achieved by applying a linear number of assignments only. The algorithm
granulates the longer input sequence into segments of size 211°8("/™)] and uses a
smart combination of a sequential search together with several binary searches
for staying asymptotically optimal regarding the number of comparisons. Hwang
and Lin’s algorithm can be modified so that it works in place, but for the price
of m? assignments. The modified form avoids the usage of an external buffer by
using repeated rotations instead. Geffert et al. give a detailed description of that
variant in [3].

(2) Block Swapping denotes the operation of exchanging the contents of two

[Algorithm Arguments | Comparisons | Assignments

Hwang and Lin u, v with |u] < |v| m(t+1) +n/2°
let where

m = [u],n = |v] t = [log(n/m)]
(1) - ext. buffer 2m+n
(2) - m rotat. n+m?+m
Block Swapping u, v with |u] = |v| - 3|ul
Floating Hole u, v with |u| = |v] - 2(Ju| + 1)

(element z is in front of u)
Block Rotation u, v - |u| + |v| + ged(|u|, |v])
< 2(Ju| + Jo])

Binary Search | u, z (searched element) llog |u]] +1 -
Insertion Sort u, let m = |u| W + (m—1) W -1

Table 1. Complexity of the Toolbox-Algorithms

(not necessarily adjacent) blocks w and v with |u| = |v|. Floating Hole denotes
a technique that can sometimes be applied in order to reduce the number of
assignments necessary for achieving a block rearrangement. In our algorithms
we will have to accomplish a rearrangement from ...zupv... to ...vzpu...,
where z is a single element, u and v are blocks of equal size and p is some arbi-
trary subsequence. [3] gives a detailed description for both operations and their
complexity.

(3) Let u and v be two adjacent blocks of not necessarily equal size. The circular
rearrangement from ...uv...to...vu..., is called a Block Rotation. If we have
an intermediate storage of one element only we need at least |u|+|v|+gcd(|ul, |v]|)
assignments for accomplishing a block rotation. Here ged(a, b) denotes the great-
est common divisor of two positive integers. An algorithm that meets this lower
bound is presented in [7].

(4) Binary Search and Insertion-Sort are two standard algorithms described in
almost all introducing literature about algorithms (e.g. [14]).

3 The Core Algorithm

We now give the definition of our unstable core algorithm that relies on extra
storage of size |/m] for local merges.

Algorithm 1: UNSTABLE-CORE-MERGE

Let ¥ = |/m| and | = |m/k|. We granulate the sequence u into blocks
ugUq - .. u;, so that all blocks u; with 0 < i < [have size k. The first block
ug gets the size m — [x k. (up is empty in the case [x k = m). Let u; = b;x;
for all i (0 < ¢ < 1), where z; corresponds to the last element of w;. If ug is
empty, then by and xy are empty as well. We separate the sequence v into [4 2
sections v = vguy ... w41 using the z; (0 < ¢ < 1), so that we get for all 4
v; < x; < v;y1. Using these granulations of v and u we rearrange our input

Algorithm 1 Unstable Core Algorithm

UNSTABLE-CORE-MERGE(A, firstl, first2,last)

1 > wisin A[firstl: first2 —1], v is in A[first2 : last — 1]
2 m «— first2 — firstl; k — [sqrt(m)]; delta «— 0;
3 ifmmodk=0
4 then blockEnd «— firstl + k
5 else blockEnd < firstl + (m mod k)
6
7 while true
8 do > Processing of the current minimal block
9 b «— BINARY-SEARCH(A, first2, last, AlblockEnd — 1))
10 to — b — (first2 — blockEnd)
11 if to > first2
12 then BLoCK-ROTATION(A, blockEnd — 1, first2, b)
13 else FLOATING-HOLE(A, blockEnd, first2, b— first2)
14 delta «— (b — first2 + delta) mod k
15 HwaNG-AND-LIN(A, firstl, blockEnd — 1, to — 1)
16 first2 — b; firstl — to
17 if firstl > first2
18 then break > No more blocks to be placed - leave the while-loop
19
20 > Search the next minimal block
21 t — firstl + k — delta; e «— first2 — delta
22 if delta > 0
23 then startMin «— SEARCH-MINIMAL-BLOCK(A, k, t, e, €)
24 else startMin «— SEARCH-MINIMAL-BLOCK(A, k, t, e, firstl)
25 t «— firstl
26
27 > Move the minimal block to the front of sequence ¢
28 if startMin = e
29 then BLOCK-SWAP(A, t, e, delta)
30 BLOCK-ROTATION(A, firstl, t, firstl + k)
31 else BLOCK-SWAP(A, ¢, startMin, k)
32 BLOCK-ROTATION(A, firstl, ¢, t+ k)
33 blockEnd «— firstl + k

sequences to bgvoxobivixy . .. buizivi41. Eventually we get the desired sorted re-
sult by local merging of all pairs b;v; (0 < i <1). Please note that all z; are at
their final position after the rearrangement-step and do not need to be part of
the local merges.

In order to keep the optimality the rearrangement must be achieved by applying
a linear number of assignments only. The following technique can be used to do
so. It is similar to the following method described by Mannila and Ukkonen in
[5]:

The rearrangement happens in a sequential style, it starts with block ug (uy if

lPseudocode Definition [Description of the Arguments

HwANG-AND-LIN(A, firstl, first2,last)|u is in A[firstl : first2 — 1],
v is in A[first2 : last — 1]

BSEARCH(A, first, last, x) delivers the position of the

first occurrence of = in A[first : last—1]
BLOCK-SWAP(A, posl, pos2,len) u is in A[posl : posl + len],

v is in A[pos2 : pos2 + len]
FroaTiNG-HOLE(A, posl, pos2, len) u,v as in BLOCK-SWAP,

element z in A[pos — 1]
BLOCK-ROTATE(A, firstl, first2,last) |u,v as in HWANG-AND-LIN
Table 2. Pseudocode Definitions of the Toolbox Algorithms

up is empty) and continues by placing the blocks in increasing order one by one.
During the rearrangement all unprocessed blocks, this means blocks that are not
moved to their final position, stay together as a group, but we allow that these
blocks become interleaved and rotated as a complete segment.

Let us now assume that we have already successfully processed all blocks
up...u; with (0 < j < [I). Then we have some sequence p g vjyi...vi11,
where p = bovgTobiv121 ...bjv;7; contains all blocks already processed and
qg=c'uj.. .u{_j_lc’ comprises the unprocessed blocks w41 ... u; in some in-
terleaved form. Additionally, due to the rotation, one unprocessed block can be
split into two parts, this is ¢’¢”. To place the next block u;41, we have first to
find the position of that block in ¢g. Due to the increasing order of the elements
in u, we have to find the block with the smallest elements in order to find b;4;.
We can do so by looking for the block with the smallest first and last element.
Depending on the result of this search, we have to distinguish two different cases:
(Case 1) The minimal block is ¢/¢’: We split «} into d’d”, so that |d’| = |¢/| and
|d"| = |¢"|. Then we exchange ¢’ and d’ in order to get ¢ = c"’c/d"uy ... up_;_,d'.
Afterwards we rotate ¢’¢’ to /¢’ and get ¢ = uj1d"uh . .. ug_j_ld’.

(Case 2) The minimal block is in wj...u;_;_, let uj (I < i < [—j)
be the minimal block. Then we exchange v} and w} in order to get ¢ =

o0, /! / / /., !0 _
ugug Uy Afterwards we rotate c’u; to ujc” and get ¢ =

ujprcuy oy g

Hence, after moving w41 to the front position we have some sequence
P bjt12j41¢"vj41 .. vi1 (¢ = bjp1241¢"). Now we will move v, 41 to its fi-
nal position just in front of ;1. Once more we have to distinguish two cases:
(Case 1) |vj+1| > |¢'| : We use a rotation in order to get vji1x;414" out of
Tj11qVjt1.

(Case 2) |vj41| < |¢'| : We split ¢’ into ¢jg5 so that |g}| = |vj11| and use
a floating-hole operation to get vj112;41¢5¢] out of ;411¢]g5v;+1. Please note
that ¢}¢j is a rotated form of ¢’ merely.

Alg. 1 gives an implementation for the UNSTABLE-CORE-MERGE algorithm in
pseudocode. Table 2 comprises the pseudocode definitions for all toolbox algo-
rithms. The pseudocode conventions are taken from [14].

Theorem 1. The UNSTABLE-CORE-MERGE algorithm needs O(mlog(% + 1))
comparisons and O(m +n) assignments.

Proof. The I+1 calls of Hwang and Lin’s algorithm need less than X!_ (¢ log(%—i—
1)) + ¢ = O(mlog(2 + 1)) comparisons and X!_((2¢; + p;) < 2m + n as-
signments, where p; = max{|u;|,|v;|} and ¢; = min{|u,|,|v;|}. Further, since
Lvm] ([logn]+1) < v/m(logn+1) = m-1£2 +\/m < m-(log n—logm)++/m =
O(mlog), the [+ 1 calls of the binary search need O(mlog(% + 1)) compar-
isons. The [searches of the minimal block consume X!_,2i < m + /m < 2m
comparisons. The [extractions of the minimal block need I(7k) < 7m assign-
ments. The [+ 1 movements of the minimal block need less than X!_,4|v;| < 4n
assignments. So, altogether we have O(mlog(= +1)) comparisons and O(m+n)
assignments. a

3.1 Extending the Core Algorithm to an Unstable in Place
Algorithm

The UNSTABLE-CORE-MERGE algorithm is asymptotically optimal, but it de-
mands an extra storage of size O(|y/m]). We will now apply a technique called
internal buffer for reducing the necessary extra storage to O(1). The notion in-
ternal buffer is due to Kronrod and was first proposed in [6]. The basic idea
is to use some particular area of the input sequences repeatedly as buffer and
to accept that the area elements are disordered by this usage. At the end the
internal buffer is sorted by applying some sorting algorithm and afterwards the
buffer elements are merged by some way. Using this approach we now derive an
unstable in-place algorithm from our core algorithm:

Algorithm 2: UNSTABLE-IN-PLACE-MERGE (u, v)

We split the input sequence u into ujus so that |ui| = [v/m]. Let = be the
last element of w;. By applying a binary search we separate v into wvyve, so
that v1 < © < ve. We rearrange ujusv1v2 to u1v1usvs using a block rotation.
Then we merge uy and ve using the UNSTABLE-CORE-MERGE algorithm (Alg.
1), where the embedded calls of Hwang and Lin’s algorithm use the segment u4
as buffer area. Because the elements of u; can be disordered during the last step,
we afterwards sort them using Insertion-Sort. Finally we use the rotation based
variant of Hwang and Lin’s algorithm for merging the two segments u; and v.

Theorem 2. The UNSTABLE-IN-PLACE-MERGE algorithm needs O(mlog(% +
1)) comparisons and O(m + n) assignments.

Proof. We have simply to count the additional operations. The unique additional
binary search and call of Hwang and Lin’s algorithm trivially doesn’t change the
asymptotic number of comparisons. Hwang and Lin’s call poses |v1| + |u1|? +
|ui] = O(m + n) additional assignments. The final insertion sort needs O(m)
comparisons as well as assignments (see Table 1). So altogether the algorithm
performs O(mlog(;- + 1)) comparisons and O(m + n) assignments. O

Buffer for local merges (all buffer-elements distinct)

{ Buffer for movement imitation (1 < e2 < e3 < ey)

Sapiileegeser| U3 uq ug ug v
1 1
' |

Fig. 1. Partitioning scheme (here for |u| = 24)

A merging algorithm is called semi-stable when it preserves the initial ordering
of equal elements of at least one of either input-sequences. It is easy to check that
none of the applications of toolbox algorithms in UNSTABLE-IN-PLACE-MERGE
changes the initial ordering of equal elements in v.

Corollary 1. UNSTABLE-IN-PLACE-MERGE is semi-stable.

4 Deriving a Stable in Place Algorithm

The lack of stability in UNSTABLE-IN-PLACE-MERGE is caused (1) by the block
extraction in the lines 27-32 of Alg. 1 and (2) the usage of the first elements
|v/m| of u as internal buffer. The block extraction raises stability-problems
because there might be two blocks containing equal elements. Such two blocks
can’t be distinguished during the search of the minimal block and so we can’t
reconstruct their initial order. We will fix these problems as follows:

We extract 2 |/m]| distinct elements out of u and create 2 buffers of size |/m]
by moving these elements to the front of u. Please note that we can disorder
and afterwards sort these buffers without losing stability. The first buffer will be
used by the embedded calls of Hwang and Lin’s algorithm, the second buffer will
be used to keep track of the order of unprocessed blocks in u. To keep track we
will apply a technique called movement imitation that is described by Symvonis
in [2]. Movement imitation means that we establish a 1-to-1 correspondence
between elements of the movement imitation buffer (mi-buffer) and u-blocks as
shown in Fig. 1. Each time when we change the order of the u-blocks during the
processing or extraction of a minimal block, we imitate this reordering in the
mi-buffer. Hence, we can find the minimal block by searching for the minimal
element in the mi-buffer.

Algorithm 3: STABLE-IN-PLACE-MERGE (u,v)

We take the UNSTABLE-IN-PLACE-MERGE algorithm as basis and apply the
following modifications:

(1) We start by extracting two buffers of size|/m | (mi-buffer and buffer for local
merges) at the beginning of u, where all buffer-elements are distinct. Such buffer

extraction can happen by performing O(m) comparisons and O(m) assignments
as described by Pardo in [9]. (2) We replace the search for the minimal block
(lines 23-24 in Alg. 1) by a procedure using the mi-buffer. (3) Any wu-block
reordering must be imitated in the mi-Buffer. (4) We need a counter variable
that counts the number of unprocessed blocks for maintaining the size of the
mi-Buffer. (5) At the end we must sort and merge the two buffers extracted in
the beginning, this replaces 2 corresponding tasks in the unstable algorithm.

Theorem 3. The STABLE-IN-PLACE-MERGE algorithm needs O(mlog(7= +1))
comparisons and O(m + n) assignments.

Proof. We have to check the effect of all modifications applied to the unstable
in place algorithm. The extraction of a buffer of size 2 |\/m| in u needs O(m)
additional comparisons and O(m) additional movements. The repeated search
of the minimal block needs X!_,i < m comparisons. The management of the
mi-buffer causes less than [-2 [\/m] < 2m assignments. For the final sorting and
merging the same argumentation can be applied as in Theorem 2. a

There might be the case that there are less than 2 |\/m] distinct elements in u
and so, due to the lack of a buffer of appropriate size, the above algorithm fails.
In order to give a solution for this case we first slightly extend the rotation-based
variant of Hwang and Lin’s algorithm as follows:

Instead of directly inserting an element = as in the original algorithm, we first
extract a maximal segment of elements equal to x by a simple linear search.
Afterwards we treat this segment as one element. This extension causes m ad-
ditional comparisons at most but allows us to express the number of necessary
assignments depending on the number of different elements in wu.

Lemma 1. Letp and q two ascending sorted sequences with p < q. The rotation-
based variant of Hwang-and-Lin’s algorithm extended by the extraction of maz-
imal segments of equal elements needs 2(A|p| + |q|) many assignments at most,
where X\ is the number of distinct elements in p.

Based on the above extension we handle the case of too few distinct elements as
follows:

Let us assume that we could extract a buffer of \ distinct elements, where
A < 2 |4/m| and that this buffer extraction divides u into ujus where u; contains
the A buffer elements. We granulate us into A blocks of size k = LmT*)‘J and one
segment containing A elements at most. We apply the stable merging algorithm
using this modified block size and for the local merges we use the variant of
Hwang and Lin’s algorithm introduced above that doesn’t rely on any internal
buffer.

Theorem 4. In the case of A distinct elements in u, where A < 2 |[/m], two
adjacent sorted sequences can be merged stable, in place and asymptotically op-
timal.

n | m |UNSTAB.-IN-PL.-MERGE|STAB.-IN-PL.-MERGE| RECMERGE |Standard alg.

F#comp te F#comp te F#comp | te | #comp| te
2722117373277 721 6359488 891 4631976[1172[4194166] 180
221191811572372 185 1448275 210 1268154/ 550 |2359280| 95
22112151 290180 70 277387 90 255641 | 240 |2129916| 80
2211212 48638 60 47501 80 44238 | 200 {2100313| 80
223|129 | 8588 260 8538 330 8064 | 721 [8383203| 340
223198 | 1257 301 1271 320 1195 | 611 |8287178| 330
2231231 176 411 180 250 172 | 421 [7381470| 330
22120 o4 70 24 110 23 | 101 |6537757| 327

te : Execution time in ms, #comp : Number of comp., m,n : Lengths of inp. seq.
Table 3. Practical comparison of various merge algorithms

Proof. The only significant modification compared to the STABLE-IN-PLACE-
MERGE algorithm concerns the size of the u-blocks and the number of different
elements in all u-blocks. It is easy to verify that this keeps the algorithm asymp-
totically optimal. a

5 Experimental Results

We did some benchmarking with the algorithms developed here, in order to get
an impression of their practical value. We compared the stable and unstable
variant with the RECMERGE algorithm proposed by Dudzinsky and Dydek in [7]
as well as the well known standard algorithm that needs linear extra storage.
Table 3 contains a summary of our results. Each entry shows a mean value of
30 runs with different data. We took a state of the art hardware platform with
2.4 Ghz processor speed and 512MB main memory, all coding was done in the
C programming language.

Despite their rather complex inner structure, the algorithms proposed here are
surprisingly fast. The stable variant is almost always a bit slower than the un-
stable one, so stability seems to have a price. Additionally we observed that our
algorithm is almost always a bit faster than RECMERGE. The latter algorithm is
not optimal regarding the number of assignments. Hence, our algorithm would
be the best selection in practice, particularly if you have to cope with input
sequences of big size.

6 Conclusion

We could show that optimal stable in place merging is not merely a theoret-
ical model but effectively usable in practice. Although our stable algorithm is
fairly complex, it is fast, for almost all inputs even faster than the algorithm of
Dudzinski and Dydek that is used as foundation of the merge_without_buffer

function contained in the C++ Standard Template Libraries. The reason for this
performance can be seen in the algorithm’s structure. The kernel provides only
a mechanism for v/m calls of Hwang-and-Lin’s algorithm. So most of the work
is done by Hwang-and-Lin’s algorithm that is well known for its efficiency.

A serious question that still remains is the role of the subalgorithms as driv-
ing factor of the overall running time. E.g. there are several rotation algorithms
and Bentley shows in [15] that the best one from the theoretical point of view
is not always the best one in practice. Another question is whether there ex-
ists a structurally more homogeneous and less complex algorithm with the same
characteristics regarding optimality. Even an easy structured minimum storage
algorithm that is optimal regarding both aspects (comparisons and assignments)
would be interesting, but is not known so far. We lead these questions to further
research in this area.

References

1. Knuth, D.E.: The Art of Computer Programming. Volume Vol. 3: Sorting and
Searching. Addison-Wesley (1973)

2. Symvonis, A.: Optimal stable merging. Computer Journal 38 (1995) 681-690

3. Geffert, V., Katajainen, J., Pasanen, T.: Asymptotically efficient in-place merging.
Theoretical Computer Science 237 (2000) 159-181

4. Chen, J.: Optimizing stable in-place merging. Theoretical Computer Science 302
(2003) 191-210

5. Mannila, H., Ukkonen, E.: A simple linear-time algorithm for in situ merging.
Information Processing Letters 18 (1984) 203—208

6. Kronrod, M.A.: An optimal ordering algorithm without a field operation. Dokladi
Akad. Nauk SSSR 186 (1969) 1256-1258

7. Dudzinski, K., Dydek, A.: On a stable storage merging algorithm. Information
Processing Letters 12 (1981) 5-8

8. C++ Standard Template Library: (http://www.sgi.com/tech/stl)

9. Pardo, L.T.: Stable sorting and merging with optimal space and time bounds.
SIAM Journal on Computing 6 (1977) 351-372

10. Salowe, J., Steiger, W.: Simplified stable merging tasks. Journal of Algorithms 8
(1987) 557-571

11. Huang, B.C., Langston, M.: Practical in-place merging. Communications of the
ACM 31 (1988) 348-352

12. Kim, P.S., Kutzner, A.: Stable minimum storage merging by symmetric compar-
isons. In Albers, S., Radzik, T., eds.: Algorithms - ESA 2004. Volume 3221 of
Lecture Notes in Computer Science., Springer (2004) 714-723

13. Hwang, F., S.Lin: A simple algorithm for merging two disjoint linearly ordered
sets. STAM J. Comput. 1 (1972) 31-39

14. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. 2nd
edn. MIT Press (2001)

15. Bentley, J.: Programming Pearls. 2nd edn. Addison-Wesley, Inc (2000)

10

