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Abstract

We propose two stable in-place merging algorithms that are asymptotically op-
timal regarding the number of required comparisons as well as assignments. The
�rst algorithm is constructed on the foundation of an unstable core algorithm
and is in the tradition of Mannila and Ukkonen's work [1]. The behavior of the
second algorithm depends on the ratio k = n

m , where m,n are the sizes of both
input sequences with m ≤ n. For each ratio k ≥ √m it relies on a simple block-
rotation based technique. Otherwise it uses a block redistribution technique in
combination with local merges. Both algorithms are modularly designed, solve
the problem by performing a series of separated steps and heavily utilize Hwang
and Lin's [2] comparison strategy for local merges. They show an excellent
runtime behavior on up-to-date hardware as proven by our benchmarking.

1. Introduction

Merging denotes the operation of rearranging the elements of two adjacent sorted
sequences of size m and n, so that the result forms one sorted sequence of m+n
elements. An algorithm merges two sequences in place when it relies on a �xed
amount of extra space. It is regarded as stable, if it preserves the initial ordering
of elements with equal value.
There are two signi�cant lower bounds for merging. The lower bound for the
number of assignments is m + n because every element of the input sequences
can change its position in the sorted output. As shown e.g. in Knuth [3] the
lower bound for the number of comparisons is Ω(m log( nm + 1)), where m ≤ n.
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A merging algorithm is called asymptotically fully optimal if it is asymptotically
optimal regarding the number of comparisons as well as assignments.

There are already several publications on asymptotically fully optimal in-place
merging, notably the work of Symvonis [4], the algorithm proposed by Ge�ert
et al. [5] as well as Chen's [6] simpli�ed form of the latter algorithm. All these
algorithms have some similarities. They construct a stable algorithm on the
foundation of an unstable core algorithm and they rely on a block management
technique proposed by Mannila and Ukkonen in [1]. None of the above publica-
tions includes remarks regarding successful implementations or benchmarking.

We will propose two asymptotically fully optimal merging algorithms that rely
on di�erent methodologies. The �rst algorithm follows the path of Ge�ert et
al. but in contrast to their algorithm it works on the foundation of �xed size
segments. In the section on benchmarking we will argue why we think this
is advantageous on up-to-date hardware, although Ge�ert et al.'s technique
leads to smaller asymptotic constants. The behavior of the second algorithm
depends on the ratio k = n

m . If we have k ≥ √m (this means quite asymmetric
inputs), it switches to a simple block-rotation based technique for merging. In
the other case it reserves some space of the shorter input sequence as �block
distribution bu�er�, where it stores information about the origin - left input or
right input - of �xed size segments. Later this �block distribution bu�er� is used
for successfully performing local merges. Both algorithms, like all the other
algorithms mentioned above, use Kronrod's internal bu�er [7] together with
Hwang and Lin's comparison strategy [2] for local merges. For both algorithms
we will give implementations in pseudocode.

After an introduction of several �toolbox algorithms�, which are used throughout
this work, we will present our �rst algorithm in a step-by-step fashion. We start
with an unstable core algorithm and re�ne this algorithm so long, until we get
a fully optimal stable in-place algorithm. Afterwards we present our second
algorithm, where we distinguish between a section presenting a simple block-
rotation based algorithm for ratios k ≥ √m and a section where we present
a much more sophisticated block redistribution based algorithm. We �nish
with some notes on benchmarking, where we report that our algorithms are
competitive and that they do not have to be viewed as theoretical models merely.
One additional �nding of the benchmarking will be that their runtimes, despite
of di�erent strategies, are quite similar. Therefore there is no clear winner
among both algorithms.

2. Toolbox Algorithms

We now introduce some notations and algorithms that will be used throughout
this work. Let u and v be two ascending sorted sequences. We de�ne u ≤ v
(u < v) i� x ≤ y (x < y) for all elements x ∈ u and for all elements y ∈ v. |u|
denotes the size of the sequence u. Unless stated otherwise, m and n (m ≤ n)
are the sizes of two input sequences u and v, respectively.
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Algorithm Arguments Comparisons Assignments

Block Swapping u, v with |u| = |v| - 3 |u|
Block Rotation u, v - |u|+ |v|+ gcd(|u| , |v|)

≤ 2(|u|+ |v|)
Hwang and Lin u, v with |u| ≤ |v| m(t+ 1) + n/2t

let where
m = |u| , n = |v| t = blog(n/m)c

(1) - ext. bu�er 2m+ n
(2) - m rotat. n+m2 +m
Binary Search u, x (searched element) blog |u|c+ 1 -
Minimum Search u |u| − 1 -

Insertion Sort u, let m = |u| m(m−1)
2 + (m− 1) m(m+1)

2 − 1

Table 1: Complexity of the Toolbox Algorithms

Tab. 1 contains the complexity regarding comparisons and assignments for six
elementary algorithms. We now brie�y introduce these algorithms and their
complexity:

(1) Block Swapping denotes the operation of exchanging the contents of two
(not necessarily adjacent) blocks u and v with |u| = |v|.
(2) Let u and v be two adjacent blocks of not necessarily equal size. The circular
rearrangement from . . . uv . . . to . . . vu . . ., is called a Block Rotation. If we have
an intermediate storage of one element only we need |u|+|v|+gcd(|u| , |v|) assign-
ments for accomplishing a block rotation. Here gcd(a, b) denotes the greatest
common divisor of two positive integers. An algorithm that meets this lower
bound is presented in [8].

(3) Hwang and Lin [2] introduced a merging-algorithm that is optimal regarding
the number of comparisons as well as assignments. Unfortunately their algo-
rithm is not in-place, it relies on an external bu�er of size m. The algorithm
granulates the longer input sequence into segments of size 2blog(n/m)c and uses a
smart combination of a sequential search together with several binary searches
for staying asymptotically optimal regarding the number of comparisons. Hwang
and Lin's algorithm can be converted into an in-place algorithm for the price of
loosing the asymptotic optimality regarding the number of assignments by rely-
ing on repeated block rotations instead of an external bu�er (Ge�ert et al. give
a detailed description of that variant in [5]). This variant of Hwang and Lin's al-
gorithm requires n+m2 +m assignments. This can be explained as follows: Let
u = x1x2 · · ·xm and v = v0v1 · · · vm with |u| = m, v0 < x1 ≤ v1, v1 < x2 ≤ v1,
· · · and vm−1 < xm ≤ vm. For the rotation from uv to v0uv1v2 · · · vm the
algorithm requires m + |v0| + gcd(m, |v0|) assignments. For the next rota-
tion from v0uv1v2 · · · vm to v0x1v1x2x3 · · ·xmv2 · · · vm the algorithm requires
m − 1 + |v1| + gcd(m − 1, |v1|) assignments, and so on. So, the number of all
assignments required by the algorithm is m+ |v0|+ gcd(m, |v0|) +m−1 + |v1|+
gcd(m−1, |v1|)+m−2+|v2|+gcd(m−2, |v2|)+· · ·+1+vm−1+gcd(1, |vm−1|) ≤
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Pseudo-code De�nition Description of the Arguments

Block-Swap(A, pos1, pos2, len) u is in A[pos1 : pos1 + len− 1],
v is in A[pos2 : pos2 + len− 1]

Block-Rotate(A, first1, first2, last) u is in A[first1 : first2− 1],
v is in A[first2 : last− 1]

Hwang-Lin(A, first1, first2, last) u, v as in Block-Rotate
Hwang-Lin-Buf(A, first1, first2, last, b) u, v as in Hwang-Lin, internal bu�er in

A[b, b+ (first2− first1)− 1] or b =nil
BSearch-Lower(A, first, last, x) delivers the position of the

�rst occurrence of x in A[first : last− 1]
BSearch-Upper(A, first, last, x) delivers the �rst position following the

last occurrence of x in A[first : last− 1]
Minimum(A, pos1, pos2) delivers the index of the minimal element

in A[pos1 : pos2− 1]
Sort(A, first, last) u is in A[first : last− 1]

Exchange(A, pos1, pos2) is equal to Block-Swap(A, pos1, pos2, 1).

Table 2: Pseudocode De�nitions of the Toolbox Algorithms

2(m+ (m− 1) + · · ·+ 1) + n= m2 +m+ n.

(4) Binary Search and Insertion-Sort are two standard algorithms described in
almost all introducing literature about algorithms (e.g. [9]).

(5) In the case of a Minimum Search we assume that u is unsorted, therefore a
linear search is necessary.

Tab. 2 gives pseudocode de�nitions for all toolbox algorithms, where the pseu-
docode conventions are taken from [9]. The procedure Hwang-Lin corresponds
to the rotation based variant of Hwang and Lin's algorithm. Hwang-Lin-Buf
requires a bu�er that has to be delivered as the �fth argument b. If a caller
passes the special value nil for b (this indicates the nonexistence of a bu�er), the
call is redirected to the rotation based variant of Hwang and Lin's algorithm. If
the value x does not occur in the sequence u, the procedures BSearch-Lower
and BSearch-Upper deliver a reference to the �rst element greater than x.

3. An Algorithm in the Tradition of Mannila and Ukkonen's work

Step by step we will develop a stable in-place algorithm out of an unstable core
that requires external space of size b√mc. The central aspect of the unstable
core is the integration of Mannila and Ukkonen's [1] e�cient block management.
In a second step the unstable core becomes an unstable in-place algorithm by
the inclusion of a local bu�er in the tradition of Kronrod's work [7]. Finally we
will get a stable algorithm by detecting and removing all sources of instability.
Major characteristics of the stable algorithm are the application of a bu�er
extraction process and the utilization of a movement imitation bu�er.
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Algorithm 1 Unstable Core Algorithm

Unstable-Core-Merge(A, first1, first2, last, buf)
1 // u is in A[first1 : first2− 1], v is in A[first2 : last− 1]
2 // required bu�er at A[buf : buf + bsqrt(m)c − 1]
3
4 m = first2− first1; k = bsqrt(m)c; delta = k
5 if m mod k == 0
6 x = first1 + k
7 else x = first1 + (m mod k)
8
9 while true
10 // Processing of the current minimal block
11 b = BSearch-Lower(A, first2, last, A[x− 1])
12 sizeL = first2− x
13 if b− first2 ≥ sizeL
14 Block-Rotate(A, x− 1, first2, b)
15 else Block-Swap(A, x, first2, b− first2);
16 Block-Rotate(A, x− 1, x, x+ (b− first2))
17 delta = (b− first2 + delta) mod k
18 if delta == 0
19 delta = k
20
21 // Local merges
22 Hwang-Lin-Buf(A, first1, x− 1, b− sizeL− 1, buf)
23 first1 = b− sizeL; first2 = b;
24 if first1 ≥ first2
25 break // No more blocks to be placed - leave the while-loop
26
27 // Search the next minimal block
28 startU = first1 + k − delta
29 startOfMinBlock = Search-Minimal-Block(A, startU, first2, k, delta)
30
31 // Move the minimal block to the front of sequence q
32 if startOfMinBlock == first2− delta
33 Block-Swap(A, startU, startOfMinBlock, delta)
34 Block-Rotate(A, first1, startU, first1 + k)
35 else Block-Swap(A, startU, startOfMinBlock, k)
36 Block-Rotate(A, first1, startU, startU + k)
37 x = first1 + k

3.1. The Unstable Core Algorithm

We now give the de�nition of our unstable core algorithm that relies on extra
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storage of size b√mc for local merges.

Algorithm 1: Unstable-Core-Merge
Let k = b√mc and l = bm/kc. We granulate the sequence u into blocks
u0u1 . . . ul, so that all blocks ui with 0 < i ≤ l have size k. The �rst block
u0 gets the size m − l · k. (u0 is empty in the case l · k = m). Let ui = bixi
for all i (0 ≤ i ≤ l), where xi corresponds to the last element of ui. If u0

is empty, then b0 and x0 are empty as well. We separate the sequence v into
l + 2 sections v = v0v1 . . . vlvl+1 using the xi (0 ≤ i ≤ l), so that we get for all
i: vi < xi ≤ vi+1. Using this granulation of v and u we rearrange our input
sequences to b0v0x0b1v1x1 . . . blvlxlvl+1. Eventually we get the desired sorted
result by local merging of all pairs bivi (0 ≤ i ≤ l). Note that all xi are at their
�nal position after the rearrangement-step and do not need to be part of the
local merges.
In order to keep the optimality the rearrangement has to be achieved by apply-
ing a linear number of assignments only. The following technique can be used
to do so. It is similar to the method described by Mannila and Ukkonen in [1]:
The rearrangement happens in a sequential style, it starts with block u0 (u1 if
u0 is empty) and continues by placing the blocks in increasing order one by one.
During the rearrangement all unprocessed blocks, this means blocks that are
not moved to their �nal position, stay together as a group, but we allow that
these blocks become interleaved and rotated as a complete segment.
Let us now assume that we have already successfully processed all blocks
u0 . . . uj , 0 ≤ j < l. Then we have some sequence p q vj+1 . . . vl+1,
where p = b0v0x0b1v1x1 . . . bjvjxj contains all blocks already processed and
q = c′′u′1 . . . u

′
l−j−1c

′ comprises the unprocessed blocks uj+1 . . . ul in some in-
terleaved form. Additionally, due to the rotation, one unprocessed block can
be split into two parts, this is c′c′′. To place the next block uj+1, we have
�rst to �nd the position of that block in q. Due to the increasing order of the
elements in u, we have to �nd the block with the smallest elements in order to
�nd bj+1. We can do so by looking for the block with the smallest �rst and
last element. Depending on the result of this search, we have to distinguish two
di�erent cases:
(Case 1 ) The minimal block is c′c′′: We split u′1 into d

′d′′, so that |d′| = |c′| and
|d′′| = |c′′|. Then we exchange c′ and d′ in order to get q = c′′c′d′′u′2 . . . u

′
l−j−1d

′.
Afterwards we rotate c′′c′ to c′c′′ and get q = uj+1d

′′u′2 . . . u
′
l−j−1d

′.
(Case 2 ) The minimal block is in u′1 . . . u

′
l−j−1 and let u′i (1 ≤ i < l − j)

be the minimal block. Then we exchange u′1 and u′i in order to get q =
c′′u′iu

′
2 . . . u

′
1 . . . u

′
l−j−1c

′. Afterwards we rotate c′′u′i to u′ic
′′ and get q =

uj+1c
′′u′2 . . . u

′
1 . . . u

′
l−j−1c

′.
Hence, after moving uj+1 to the front position we have some sequence
p bj+1xj+1q

′vj+1 . . . vl+1 (q = bj+1xj+1q
′). Now we will move vj+1 to its �-

nal position just in front of xj+1. Once more we have to distinguish two cases:
(Case 1 ) |vj+1| ≥ |q′| : We use a rotation in order to get vj+1xj+1q

′ out of
xj+1q

′vj+1.
(Case 2 ) |vj+1| < |q′| : We split q′ into q′1q

′
2 so that |q′1| = |vj+1| and use a
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block swap followed by a rotation to get vj+1xj+1q
′
2q
′
1 out of xj+1q

′
1q
′
2vj+1.

Theorem 1. The Unstable-Core-Merge algorithm needs O(m log( nm + 1))
comparisons and O(m+ n) assignments.

Proof. The l+1 calls of Hwang and Lin's algorithm need less than Σli=0(qi log(piqi +
1)) + qi = O(m log( nm + 1)) comparisons and Σli=0(2qi + pi) ≤ 2m + n as-
signments, where pi = max{|ui|, |vi|} and qi = min{|ui|, |vi|}. Further, since

b√mc (blog nc+ 1) ≤ √m(blog nc+ 1) = m · blognc√
m

+
√
m ≤ m · (log(n+m)−

logm) +
√
m = O(m log( nm + 1)), the l + 1 calls of the binary search need

O(m log( nm + 1)) comparisons. The l searches of the minimal block consume
Σli=12i ≤ m +

√
m ≤ 2m comparisons. The l extractions of the minimal block

need l(7k) ≤ 7m assignments. The l + 1 movements of the minimal block need
less than Σli=04|vi| ≤ 4n assignments. So, altogether we have O(m log( nm + 1))
comparisons and O(m+ n) assignments.

Alg. 1 gives an implementation for Unstable-Core-Merge in pseudocode.
The de�nition of the procedure Search-Minimal-Block is left out due to
its insigni�cance in the context of the stable algorithm presented later in this
section. The meaning of all variables can be implied from the full de�nition of
the stable algorithm in B.

3.1.1. Extending the Core Algorithm to an Unstable in Place Algorithm

The Unstable-Core-Merge algorithm is asymptotically optimal, but it de-
mands an extra storage of size O(b√mc). We will now apply a technique called
internal bu�er for reducing the necessary extra storage to O(1). The notion
internal bu�er is due to Kronrod and was �rst proposed in [7]. The basic idea
is to use some particular area of the input sequences repeatedly as bu�er and
to accept that the area elements are disordered by this usage. At the end the
internal bu�er is sorted by applying some sorting algorithm and afterwards the
bu�er elements are merged by some way. Using this approach we now derive an
unstable in-place algorithm from our core algorithm:

Algorithm 2: Unstable-In-Place-Merge (u, v)
We split the input sequence u into u1u2 so that |u1| = b√mc. Let x be the
last element of u1. By applying a binary search we separate v into v1v2, so
that v1 < x ≤ v2. We rearrange u1u2v1v2 to u1v1u2v2 using a block rotation.
Then we merge u2 and v2 using the Unstable-Core-Merge algorithm (Alg.
1), where the embedded call of Hwang and Lin's algorithm in line 22 uses the
segment u1 as bu�er area. Because the elements of u1 can be disordered during
the last step, we afterwards sort them using Insertion-Sort. Finally we use
the rotation based variant of Hwang and Lin's algorithm for merging the two
segments u1 and v1.

Theorem 2. The Unstable-In-Place-Merge algorithm needs O(m log( nm +
1)) comparisons and O(m+ n) assignments.
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e1 vu3

Buffer for local merges

e2e3e4 u4 u5 u6u1

Buffer for movement imitation (e1 < e2 < e3 < e4)

(all buffer-elements distinct)

Figure 1: Partitioning scheme (here for |u| = 24)

Proof. We have simply to count the additional operations. The unique addi-
tional binary search and call of Hwang and Lin's algorithm trivially doesn't
change the asymptotic number of comparisons. Hwang and Lin's call poses
|v1| + |u1|2 + |u1| = O(m + n) additional assignments. The �nal insertion sort
needs O(m) comparisons as well as assignments (see Table 1). So altogether the
algorithm performs O(m log( nm+1)) comparisons and O(m+n) assignments.

A merging algorithm is called semi-stable when it preserves the initial ordering
of equal elements of at least one of either input-sequences. It is easy to check
that none of the applications of toolbox algorithms in Unstable-In-Place-
Merge changes the initial ordering of equal elements in v.

Corollary 3. Unstable-In-Place-Merge is semi-stable.

3.2. Deriving a Stable in Place Algorithm

The lack of stability in Unstable-In-Place-Merge is caused by (1) the block
extraction in line 29 of Alg. 1 and (2) the usage of the �rst elements b√mc
of u as internal bu�er. The block extraction raises stability-problems because
there might be two blocks containing equal elements. Such two blocks can't be
distinguished during the search of the minimal block and so we can't reconstruct
their initial order. We will �x these problems as follows:
We extract 2 b√mc distinct elements out of u and create 2 bu�ers of size b√mc
by moving these elements to the front of u. Note that we can disorder these
bu�ers and afterwards sort them without losing stability. The �rst bu�er will be
used by the embedded call of Hwang and Lin's algorithm, the second bu�er will
be used to keep track of the order of unprocessed blocks in u. To keep track we
will apply a technique called movement imitation that is described by Symvonis
in [4]. Movement imitation means that we establish a 1-to-1 correspondence
between elements of the movement imitation bu�er (mi-bu�er) and u-blocks as
shown in Fig. 1. Each time when we change the order of the u-blocks during the
processing or extraction of a minimal block, we imitate this reordering in the
mi-bu�er. Hence, we can �nd the minimal block by searching for the minimal
element in the mi-bu�er.
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Algorithm 3: Stable-In-Place-Merge (u, v)
We take the Unstable-In-Place-Merge algorithm as basis and apply the
following modi�cations:
(1) We start by extracting two bu�ers of sizeb√mc (mi-bu�er and bu�er for local
merges) at the beginning of u, where all bu�er-elements are distinct. Such bu�er
extraction can happen by performing O(m) comparisons and O(m) assignments
as described by Pardo in [10]. (2) We replace the search for the minimal block
(line 29 in Alg. 1) by a procedure using the mi-bu�er. (3) Any u-block reordering
must be imitated in the mi-Bu�er. (4) We need a counter variable that counts
the number of unprocessed blocks for maintaining the size of the mi-Bu�er. (5)
At the end we must sort and merge the two bu�ers extracted in the beginning,
this replaces 2 corresponding tasks in the unstable algorithm.

Theorem 4. The Stable-In-Place-Merge algorithm needs O(m log( nm +1))
comparisons and O(m+ n) assignments.

Proof. We have to check the e�ect of all modi�cations applied to the unstable
in place algorithm. The extraction of a bu�er of size 2 b√mc in u needs O(m)
additional comparisons and O(m) additional movements. The repeated search
of the minimal block needs Σli=1i ≤ m comparisons. The management of the
mi-bu�er causes less than l · 2 b√mc ≤ 2m assignments. For the �nal sorting
and merging the same argumentation can be applied as in Theorem 2.

3.2.1. Undersized Bu�er

There might be the case that there are less than 2 b√mc distinct elements in u
and so, due to the lack of a bu�er of appropriate size, the above algorithm fails.
In order to give a solution for this case we �rst slightly extend the rotation-based
variant of Hwang and Lin's algorithm as follows:
Instead of directly inserting an element x as in the original algorithm, we �rst
extract a maximal segment of elements equal to x by a simple linear search.
Afterwards we treat this segment as one element. This extension causes m
additional comparisons at most but allows us to express the number of necessary
assignments depending on the number of di�erent elements in u.

Lemma 5. Let p and q be two ascending sorted sequences with p ≤ q. The
rotation-based variant of Hwang-and-Lin's algorithm extended by the extraction
of maximal segments of equal elements needs 2(λ|p|+ |q|) many assignments at
most, where λ is the number of distinct elements in p.

Based on the above extension we handle the case of too few distinct elements
as follows:
Let us assume that we could extract a bu�er of λ distinct elements, where
λ < 2 b√mc and that this bu�er extraction divides u into u1u2 where u1 contains
the λ bu�er elements. We granulate u2 into λ blocks of size k =

⌊
m−λ
λ

⌋
and one

segment containing λ elements at most. We apply the stable merging algorithm
using this modi�ed block size and for the local merges we use the variant of
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Hwang and Lin's algorithm introduced above that doesn't rely on any internal
bu�er.

Theorem 6. In the case of λ distinct elements in u, where λ < 2 b√mc, two
adjacent sorted sequences can be merged stable, in place and asymptotically op-
timal.

Proof. The only signi�cant modi�cation compared to the Stable-In-Place-
Merge algorithm concerns the size of the u-blocks and the number of di�erent
elements in all u-blocks. It is easy to verify that this keeps the algorithm
asymptotically optimal.

A complete de�nition of Stable-In-Place-Merge inclusive documentation is
given in A.

4. A Ratio Considering Algorithm

We will now solve the merging problem by inspecting the ratio k = n
m . Depend-

ing on this ratio the merging problem changes its nature. E.g. for k = n (the
shorter input consists here only of a single element) an optimal solution with
respect to the number of comparisons represents a simple binary search. On the
opposite, for k = 1 (both input sequences are now of equal size) such binary
search has little signi�cance in the context of an asymptotically optimal solu-
tion. The algorithm presented in this section pays attention to this observation
and switches to a special subalgorithm for speci�c ratios. This subalgorithm,
called Block-Rotation-Merge, is only optimal for ratios greater than or
equal to

√
m and will be presented in the �rst subsection. It is structurally

quite simple and combines a block redistribution process with local merges on
the foundation of Hwang and Lin's technique in combination with rotations.
The central algorithm, called Stable-Optimal-Block-Merge, is optimal for
arbitrary ratios and will be presented in the second subsection. It is quite com-
plex, requires an internal bu�er in the tradition of Kronrod's work and utilizes
a block distribution bu�er for block redistributions.

4.1. A simple asymptotically optimal algorithm for ratios k ≥ √m
First we will now show that there is a simple stable merging algorithm called
Block-Rotation-Merge that is asymptotically fully optimal for any ratio
k ≥ √m. Afterward we will prove that there is a relation between the number of
di�erent elements in the shorter input sequence u and the number of assignments
performed by the rotation based variant of Hwang and Lin's algorithm [2]. In
the following δ always denotes some block-size with δ ≤ m.

Algorithm 1: Block-Rotation-Merge (u, v, δ)
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Algorithm 2 Pseudocode of Block-Rotation-Merge

Block-Rotation-Merge(A, first1, first2, last, delta)
1 // u is in A[first1 : first2− 1], v is in A[first2 : last− 1]
2 p = first1 + ((first2− first1) mod delta)
3 if p == first1
4 p = p+ delta− 1
5 else p = p− 1
6 repeat

7 b = BSearch-Lower(first2, last, A[p])
8 Block-Rotate(A, p, first2, b)
9 Hwang-Lin(A, first1, p, p+ (b− first2))
10 first1 = p+ 1 + (b− first2)
11 first2 = b
12 p = first1 + delta− 1
13 until first1 ≥ first2

1. We split the sequence u into blocks u1u2 . . . udmδ e so that all sections u2

to udmδ e are of equal size δ and u1 is of size m (mod δ). Let xi be the

last element of ui (i = 1, · · · ,
⌈
m
δ

⌉
). Using binary searches we compute

a splitting of v into sections v1v2 . . . vdmδ e so that vi < xi ≤ vi+1(i =

1, · · · ,
⌈
m
δ

⌉
− 1).

2. u1u2 . . . udmδ ev1v2 . . . vdmδ e is reorganized to

u1v1u2v2 . . . udmδ evdmδ e using
⌈
m
δ

⌉
− 1 many rotations.

3. We locally merge all pairs uivi using
⌈
m
δ

⌉
calls of the rotation based variant

of Hwang and Lin's algorithm ([2]).

The steps 2 and 3 are interlaced as follows: After creating a new pair uivi (i =
1, · · · ,

⌈
m
δ

⌉
) as part of the second step we immediately locally merge this pair as

described in step 3. A description of Block-Rotation-Merge in pseudocode
is given in Alg. 2.

Lemma 7. Block-Rotation-Merge performs less than m2

δ +2m+m ·δ+2n
assignments if we use the optimal algorithm from Dudzinski and Dydek [8] for
all block-rotations .

Proof. For the �rst rotation from u1u2 · · ·udmδ ev1 to u1v1u2 · · ·udmδ e the algo-
rithm performs |u2|+ · · ·+ |udmδ e|+ |v1|+ gcd(|u2|+ · · ·+ |udmδ e|, |v1|) assign-
ments. The second rotation from u2u3 · · ·udmδ ev2 to u2v2u3 · · ·udmδ e requires
|u3|+· · ·+|udmδ e|+|v2|+gcd(|u3|+· · ·+|udmδ e|, |v2|) assignments, and so on. For

the last rotation from udmδ e−1udmδ evdmδ e−1vdmδ e to udmδ e−1vdmδ e−1udmδ evdmδ e
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the algorithm requires |udmδ e|+ |vdmδ e−1|+ gcd(|udmδ e|, |vdmδ e−1|) assignments.

So, for all rotations the algorithm requires less than 2δ(mδ +(mδ −1)+· · ·+1)+n =
m2

δ +m+ n assignments. Additionally the number of required assignments for
the local merges is smaller than m

δ (δ2 + δ) + n = m · δ +m+ n. Altogether the

algorithm performs less than m2

δ +m+n+m · δ+m+n = m2

δ + 2m+m · δ+ 2n
assignments.

Lemma 8. If k =
∑n
i=1 ki for any ki > 0 and integer n > 0, then

∑n
i=1 log ki ≤

n log(k/n).

Proof. It holds because the function log x is concave.

Lemma 9. If we assume a block-size of b√mc, then Block-Rotation-Merge
is asymptotically optimal regarding the number of comparisons.

Proof. The binary searches for splitting v into sections v1v2 . . . vdmδ e require

altogether less than
√
m(log n + 1) =

√
m(log n

m + logm + 1) comparisons.
Because of the assumption k = n

m ≥
√
m it holds 2 log n

m ≥ logm. Hence we
have

√
m(log n+1) ≤ √m(3 log n

m +1) = O(
√
m log n

m ) comparisons. For step 3

(local merges) we need
∑√m
i=1 (
√
m(log |vi|√

m
+1)+ |vi|

|vi|/
√
m

) =
√
m(
∑√m
i=1 log |vi|)−

m log
√
m+ 2m comparisons at most (Here we simply assume

√
m is a positive

integer number and it holds vi > 0 for all i = 1, 2, · · · ,√m.). According to

Lemma 8, the algorithm performs
∑√m
i=1 (
√
m(log |vi|√

m
+ 1) + |vi|

|vi|/
√
m

)≤ √m ·√
m · log n√

m
−m log

√
m+ 2m = O(m log n

m ) comparisons for step 3.

From the above Lemmas (7 and 9) we get the following result:

Corollary 10. If we assume a block-size of b√mc, then Block-Rotation-
Merge is asymptotically fully optimal for all k ≥ √m.

So, for k ≥ √m there is a quite primitive asymptotically fully optimal stable
in-place merging algorithm. In the context of complexity deliberations in the
next section we will rely on the following Lemma.

Lemma 11. Let λ be the number of di�erent elements in u. Then the num-
ber of assignments performed by the rotation based variant of Hwang and Lin's
algorithm is O(λ ·m+ n) = O((λ+ k) ·m).

Proof. Let u = u1u2 . . . uλ, where every ui(i = 1, · · · , λ) is a maximally sized
section of equal elements. We split v into sections v1v2 . . . vλvλ+1 so that we get
vi < ui ≤ vi+1 (i = 1, · · · , λ). (Some vi may be empty.) We assume that Hwang
and Lin's algorithm already merged a couple of section and comes to the �rst el-
ements of the section ui(i = 1, · · · , λ). The algorithm now computes the section
vi and moves it in front of ui using one rotation of the form · · ·ui . . . uλvi · · · to
· · · viui . . . uλ · · · . This requires |ui|+· · ·+|uλ|+|vi|+gcd(|ui|+· · ·+|uλ|, |vi|) ≤

12
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(all elements in this area are distinct)

s2 b

elements originating from u

block distribution storage buffer

Figure 2: Segmentation after the bu�er extraction

2(m+ |vi|) many assignments. Afterward the algorithm continues with the sec-
ond element in ui. Obviously there is nothing to move at this stage because all
elements in ui are equal and the smaller elements from v were already moved
in the step before. Because we have only λ di�erent sections, the lemma is
true.

Corollary 12. Hwang and Lin's algorithm is fully asymptotically optimal if we
have either k ≥ m or k ≥ λ where λ is the number of di�erent elements in the
shorter input sequence u .

4.2. An asymptotically optimal algorithm for arbitrary ratios

We will now propose a stable in-place merging algorithm called Stable-Optimal-
Block-Merge that is fully asymptotically optimal for arbitrary ratios. Notable
properties of our algorithm are: It does not rely on the block management tech-
niques described in Mannila and Ukonnen's work [1] in contrast to all other such
algorithms proposed so far. It degenerates to the simple Block-Rotation-
Merge algorithm for roughly k ≥ √m/2 . The internal bu�er for local merges
and the movement imitation bu�er share a common bu�er area. The two opera-
tions �block rearrangement� and �local merges� stay separated and communicate
with each other using a common block distribution storage. There is no lower
bound regarding the size of the shorter input sequence.

Algorithm 2: Stable-Optimal-Block-Merge

Step 1: Block distribution storage assignment

Let δ = b√mc be our block-size. We split the input sequence u into u = s1ts2u
′

so that s1 and s2 are two sequences of size bm/δc+bn/δc each and t is a sequence
of maximal size with elements equal to the last element of s1. We assume that
there are enough elements to get a nonempty u′. We call s1 together with s2
our block distribution storage (in the following shortened to bd-storage).

Step 2: Bu�er extraction

In front of the remaining sequence u′ we extract an ascending sorted bu�er b of
size δ so that all pairs of elements inside b are distinct (as described by Pardo
in [10]). Once more we assume that there are enough elements to do so. Now
let w be the remaining right part of u′ after the bu�er extraction.
The segmentation of our input sequences after the bu�er extraction is shown in
Fig. 2.

13
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Figure 3: Graphical remarks to the block rearrangement process

Step 3: Block rearrangement

We logically split the sequence wv into blocks of equal size δ as shown in Fig.
3 (a). The two blocks w1 and vbnδ c+1 are undersized and can even be empty.

In the following we call every block originating from w a w-block and every
block originating from v a v-block. The minimal w-block of a sequence of
w-blocks is always the w-block with the lowest order (smallest elements)
regarding the original order of these blocks.

We rearrange all blocks except of the two undersized blocks w1 and vbnδ c+1, so

that the following 3 properties hold:
(1) If a v-block is followed by a w-block, then the last element of the v-block
must be smaller than the �rst element of the w block (Fig. 3(b)).
(2) If a w-block is followed by a v-block, then the �rst element of the w-block
must be smaller or equal to the last element of the v-block (Fig. 3(b)).
(3) The relative order of the v-blocks as well as w-blocks stays unchanged.

This rearrangement can be easily realized by �rolling� the w-blocks through the
v-blocks and by �dropping� minimal w-blocks so that the above properties are
ful�lled. The method of �rolling� is illustrated in Fig. 4 and can be explained
as follows:
Let wi,f and vi,e be the �rst element of wi and the last element of vi for each
i, respectively. First we compare w2,f with v1,l. If w2,f > v1,l, then we swap
w2 and v1 and afterwards we compare w2,f with v2,l. In the other case, we
compare w3,f with v1,l. If w3,f > v1,l, then we swap w3 and v1 and afterwards
we compare w3,f with v2,l. We continue doing so until all blocks have been
moved to their correct positions.
During this rolling the unplaced w-blocks stay together as group but they can be
interlaced. So, due to the need for stability, we have to track their positions. For
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vi,l: the last element of vi

Figure 4: Block rearrangement - Rolling of w-blocks - An example

this reason we mirror all block replacements in the bu�er area using a technique
called movement imitation (The technique of movement imitation is described
e.g. in [4]). Each time when a minimal w-block was dropped, we can �nd the
position of the next minimal block using this bu�er area.
Later we will have to �nd the positions of w-blocks in the block-sequence created
as output of the rearrangement process. For this purpose we store the positions
of w-blocks in the block distribution storage as follows:
The block distribution storage consists of two sections of size bm/δc + bn/δc
each and the i-th element of the �rst section together with the i-th element of
the second section belong to the i-th block in the result of the rearrangement
process. Note that, due to the technique used for constructing the bd-storage,
such pairs of elements are always di�erent with the �rst one smaller than the
second one. If the i-th block originates from w, we exchange the corresponding
elements in the bd-storage. Otherwise we leave them untouched. Fig. 3(c)
shows this graphically.

Step 4: Local merges

We visit every w-block and proceed as follows:
Let p be the w-block to be merged and let q be the sequence of all v-originating
elements immediately to the right of p that are still unmerged. Further let x be
the �rst element of p.

(1) Using a binary search we split q into q = q1q2 so that we get q1 < x ≤ q2.
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It holds |q1| < δ due to the block rearrangement applied before. (2) We rotate
pq1q2 to q1pq2. (3) We locally merge p and q2 by Hwang and Lin's algorithm,
where we use the bu�er area as internal bu�er.

This visiting process starts with the rightmost w-block and moves sequentially
w-block by w-block to the left. The positions of the w-blocks are detected using
the information hold in the bd-storage. Every time when we locate the position
of a w-block in the bd-storage we bring the corresponding bd-storage elements
back to their original order. So, after �nishing all local merges both sections of
the bd-storage are restored to their original form.

Step 5: Final sweeping up

On the left there is a still unmerged subsequence s1ts2bw1v
′ where v′ is the

subsection of v that consists of the remaining unmerged elements. We proceed
as follows: (1) We split v′ into v′ = v′1v

′
2 so that v′1 < x ≤ v′2 where x is the

last element of s2. Afterward we rotate bw1v
′
1v
′
2 to v′1bw1v

′
2 and locally merge

w1 and v′2 using Hwang and Lin's algorithm with the internal bu�er. (2) In the
same way we split v′1 into v′1 = v′1,1v

′
1,2 so that we get v′1,1 < y ≤ v′1,2 where y is

the last element of s1. We rotate s1ts2v
′
1,1v

′
1,2 to s1v

′
1,1ts2v

′
1,2 and locally merge

s1 with v′1,1 and s2 with v1,2' using the Block-Rotation-Merge algorithm
with a block-size of b√mc. (3) We sort the bu�er area using Insertion-Sort
and merge it with all elements right of it using the rotation based variant of
Hwang and Lin's algorithm.

Lack of Space in Step 1:

The inputs are so asymmetric that u′ becomes empty. Using a binary search
we split v into v = v1v2 so that we get v1 < t ≤ v2 and rotate s1ts2v1v2 to
s1v1ts2v2. Using the Block-Rotation-Merge algorithm with a block-size
b√mc we locally merge s1 with v1 and s2 with v2. If s2 is empty we ignore it
and directly merge s1 with v in the same style.

Extracted bu�er smaller than b√mc in Step 2:

We assume that we could extract a bu�er of size λ with λ < b√mc. We change
our block-size δ (the size of w-blocks as well as v-blocks) to b|u| /λc and apply
the algorithm as described but with the modi�cation that we use the rotation
based variant of Hwang and Lin's algorithm for all local merges.

Corollary 13. Stable-Optimal-Block-Merge is stable.

Theorem 14. The Stable-Optimal-Block-Merge algorithm requires O(m+
n) = O(m · (k + 1)) assignments.

Proof. It is enough to prove that every step requires O(m+n) assignments. We
inspect all steps:
Step 1: This step comprises no assignments at all.
Step 2: The bu�er extraction requires O(m) assignments.
Step 3: The �rolling� of the w-blocks through the v-blocks together with the
�dropping� of the minimal w-blocks requires less than 3

√
m · (√m + n√

m
) =

O(m+ n) assignments. The rotations for the integrated �movement imitation�
contribute O(

√
m · (√m + n√

m
)) = O(m + n) assignments. The marking of
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the positions of the w-blocks in the bd-storage needs O(
√
m) assignments. So,

altogether step 3 requires O(m+ n) assignments.
Step 4: Each w-block rotation (e. g. rotation from pq1q2 to q1pq2) requires√
m+
√
m+gcd(

√
m,
√
m) = 3

√
m assignments at most. So all w-block rotations

need 3
√
m · (√m) = O(m) assignments at most. The local mergings using

Hwang and Lin's algorithm require less than 2m + n assignments, altogether.
The reconstruction of the original order of the swapped elements in the bd-
storage contributes 3

√
m = O(

√
m) assignments.

Step 5: The �rst rotation requires |v′

1| + |bw1| + gcd(|v′

1|, |bw1|) assignments.
Here the length of v′ in the unmerged sub-sequence s1ts2bw1v

′ may become
as long as n. The local merging of w1 and v′2 needs 2|w1| + |v

′

2| assignments.
Therefore the required number of assignments for completing both operations
is less than 6

√
m+ n. The success in step 1 implies that k ≤ √m/2, so we get

k · √m ≤ m
2 . Further bm/δc + bn/δc is roughly equal to (k + 1) · √m = m+n√

m
.

So, the second rotation requires |v′1,1| + |ts2| + gcd(|v′1,1|, |ts2|) ≤ 2(m+n√
m

) + n

assignments. According to Lemma 7 the local merging of s1with v′1,1 (s2with

v′1,2) by Block-Rotation-Merge needs (k+1)2·m√
m

+ 2 · (k+ 1) · √m+m
√
m+

2|v′1,1| ( (k+1)2·m√
m

+2 ·(k+1) ·√m+m
√
m+2|v′1,2|) assignments at most. Further

it holds (k+1)2·m√
m

+ 2 · (k + 1) · √m + m
√
m ≤ 3

√
m + 3m + 3

2n. The bu�er

sorting using insertion sort contributes O(m) assignments and the �nal call of
Hwang and Lin's algorithm requires n+m+

√
m assignments. So, step 5 needs

altogether O(m+ n) assignments at all.
In the �rst exceptional case �Lack of Space in Step 1� we have k ≥ √m/2 and
directly switch to Block-Rotation-Merge. According to Lemma 7 the local
merging s1 with v1 (the local merging s2 with v2) requires less than (m2 )2/

√
m+

2·(m2 )+m
√
m+2·|v1| ((m2 )2/

√
m+2·(m2 )+m

√
m+2·|v2| ) assignments. Thus the

required number of assignments is smaller than 5m
√
m/2 + 2m+ 2n ≤ 2m+ 7n

altogether.
In the second exceptional case �Extracted bu�er smaller than b√mc� we change
the block-size to b|u| /λc with λ <

√
m and use the rotation based variant of

Hwang and Lin's algorithm for local merges. A recalculation of the steps 3 to
5, where we use Lemma 11 in the context of all local merges, proves that the
number of assignments is still O(m+ n) .

Theorem 15. The Stable-Optimal-Block-Merge algorithm requires
O(m log( nm + 1)) = O(m log(k + 1)) comparisons.

Proof. As in the case of the assignments it is enough to show that every step
keeps the asymptotic optimality. In step 1 t is a sequence of maximal size with
elements equal to the last element of s1. Using binary search we can �nd the
position of the last element of t. Therefore step 1 contains one binary search over
m merely . The bu�er extraction in step 2 requiresm comparisons at most. The
rearrangement of all blocks except of the two undersized blocks w1 and vbnδ c+1

in step 3 requires less than
√
m + n√

m
comparisons. As already mentioned in
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Th. 14, the success in step 1 implies that k ≤ √m/2, i.e. n ≤ m
√
m/2. Thus√

m+ n√
m
≤ √m+m/2. The detection of the minimal element in the movement

imitation bu�er demands
√
m · √m many comparisons at most. In step 4 the

binary searches for splitting the q-sequences cost less than
√
m · (log

√
m + 1)

comparisons. Now let (m1, n1), (m2, n2), · · · , (mr, nr) be the sizes of all r-
groups that are locally merged by Hwang and Lin's algorithm. According to
Lemma 8, Table 1 and since r <

√
m this task requires

∑r
i=1(mi(log( nimi )+1)+

mi) =
∑r
i=1(mi log( nimi ) + 2mi) ≤

∑r
i=1mi log( nimi ) + 2m =

∑r
i=1(mi log ni −

mi logmi) + 2m ≤ √m(
√
m log n

r −
√
m log m

r ) + 2m ≤ m(log( nm + 1)) + 2m =
O(m log( nm + 1)) comparisons. The asymptotic optimality in step 5 as well as
in the exceptional case �Lack of Space in Step 1� is obvious due to Lemma 9.
The change of the block-size in the second exceptional case �Extracted bu�er
smaller than b√mc� triggers a simple recalculation of step 3 and step 4, where
we leave the details to the reader.

Corollary 16. Stable-Optimal-Block-Merge is an asymptotically fully
optimal stable in-place merging algorithm.

A full implementation inclusive documentation of Stable-Optimal-Block-
Merge in pseudocode is given in B.

4.3. Optimizations

We now report about several optimizations that help improving the perfor-
mance of Stable-Optimal-Block-Merge without any impact to its asymp-
totic properties. The immediate mirroring of all w-block movements in the
movement imitation bu�er (occurs in Step 3) triggers a rotation (line 10 in Alg.
6) every time when a v-block is moved into front of the group of w-blocks. The
number of necessary rotations can be reduced by �rst counting the number of v-
blocks moved into front of the w-blocks. This counting follows a single update of
the movement imitation bu�er if the placement of a minimal w-block happens.
In the context of the movement of v-blocks into front of w-blocks (Step 3) a �oat-
ing hole technique as described by Ge�ert et al. [5] can be applied for reducing
the number of assignments. Similarly such a �oating hole technique can also be
applied during the local merges (Step 4) by combining the block swap to the
internal bu�er with the rotation that moves all smaller v-originating elements
to the front of the w-block. In the special case �Extracted bu�er smaller then
b√mc� the sorting of the bu�er b in Step 5 is unnecessary because the bu�er is
already sorted after Step 3 and stays unchanged during Step 4. Insertion-Sort
can be replaced by some more e�cient sorting algorithm. Note that there is no
need for stability in the context of the bu�er sorting because all bu�er elements
are distinct.

5. Experimental work

We did some experimental work with our algorithms in order to get an impres-
sion of their performance. We compared them with the following 3 competing
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Figure 5: Benchmarking for asymmetrically sized inputs

merging algorithms:

1. The standard textbook algorithm: Starting at the leftmost positions of either
input sequences we compare pairs of elements, called head elements, such that
the smaller element is written to the output and its successor replaces it as head
element. The standard algorithm requires external memory of at least the size
of the shorter input sequence.

2. The RecMerge algorithm proposed in [8]: RecMerge represents a mini-
mum storage algorithm that relies on a divide and conquer strategy for merging.
It is asymptotically optimal regarding the number of comparisons but not lin-
ear with respect to the number of necessary assignments. This algorithm gained
attention in praxis because it is the foundation of the merge_without_buffer

function in the C++ Standard Template Library (STL) [11].

3. The simply structured in-place Alg. proposed by Chen in [12]: Chen's algo-
rithm is an unstable in-place merging algorithm that is asymptotically optimal
regarding the number of assignments but not asymptotically optimal regarding
the number of required comparisons. Chen gives a pseudocode description of
this algorithm that we could successfully map to C++ code. In the context of
our benchmarking we chose as block-size b√mc, where m is the size of the left
input-sequence.

All coding and benchmarking were done by using the Visual C++ 2008 com-
piler with O2-optimization (maximal speed) switched on. On hardware side we
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Figure 6: Benchmarking for symmetrically sized inputs

used an up-to-date standard con�guration with an AMD AthlonTMDual Core
Processor 4850e operating at 2.5 Ghz and 2 GB RAM. The outcome of our
benchmarking is shown in Fig. 5 and Fig. 6, where each marker represents
an average value of 50 runs with sequences of randomly chosen 32-bit integer
values. Fig. 5 investigates the behavior of all �ve algorithms if we successively
increase the size of the left input sequence, where the overall size stays equal
with 222 elements. It allows a practical veri�cation of the asymptotically opti-
mal behavior regarding the number of comparisons as well as assignments. Fig.
6 inspects the algorithms for symmetrically sized inputs and aims to compare
the performance of all 5 algorithms for a broader range of input sizes.

There are several alternatives regarding the bu�er extraction that occurs as sub-
operation in both algorithms. The extraction process can be started from the
left end as well as from the right end of the input and we can choose between
a binary search and linear search for the determination of the next element.
All 4 possible combinations keep the asymptotic optimality. However, there is
no clear �best choice� among them because the most advantageous combination
can vary depending on the structure of the input. In the context of our bench-
marking we decided for the variant �starting from the left combined with linear
search�.
The runtimes of our two algorithms are quite close to each other. This can be
explained by the fact, that both algorithms rely on Hwang and Lin's strategy
for local merges and that these local merges contribute heavily to the overall
runtime. Fig. 6 shows that the runtime overhead in comparison to the STL-
implementation of the standard textbook algorithm is roughly 50% starting with
211 elements. So, the algorithms are practically usable for inputs of reasonable
size, for example in the context of some Merge-Sort. The runtimes of our algo-
rithms are always better than the times for RecMerge or Chen's algorithm.
The superiority regarding RecMerge can be easily explained by RecMerge's
lack of asymptotic optimality regarding the number of assignments. The superi-
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ority regarding Chen's algorithm is rather surprising, given the fact that Chen's
algorithm requires only half of the assignments of our algorithms. However,
it can be explained by the pattern used by Chen's Alg. for accessing memory
elements. This pattern does not �t well with the cache architectures of modern
CPUs because it tends to create costly page con�icts. A discussion of these
aspects of algorithms on the background of block-rotations can be found in [13].

6. Conclusion

We proposed two stable in-place merging algorithms that are asymptotically
optimal regarding the number of comparisons as well as assignments. Using
benchmarking we could show that our algorithms behave performantly on up-
to-date hardware for inputs of reasonable size. So, they are not only of theoret-
ical interest but also of practical value.
Our �rst algorithm was in the tradition of Mannila and Ukkonen's work [1]; it
can be seen as a speci�c instantiation of the ideas expressed by Symvonis in [4].
This algorithm did not comprise techniques for coping with expandable local
bu�ers as proposed by Ge�ert et al. in [5], instead it followed a simpler �xed
size approach. The more sophisticated concept of expandable bu�ers delivers
improved asymptotic constants in the context of some complexity analysis re-
garding the number of assignments, but it exposes the algorithm to a higher
risk of page con�icts on up-to-date hardware, due to the resulting pattern for
memory access. This allows the assumption, that the inclusion would lead to
rather deteriorated runtimes, as observed in the context of the comparison with
Chen's algorithm in section 5. Due to the lack of the availability of a working
implementation for Ge�ert et al.'s algorithm a direct comparison could not be
included.
The behavior of our second algorithm was driven by the ratio of the sizes of
both input sequences. For severely asymmetric inputs (inputs with some ratio
k ≥ √m, where k = n

m and m,n are the sizes of both input sequences with
m ≤ n) it simply performed several block rotations interchanged with local
merges. Otherwise it applied a more complex technique that comprised the
redistribution of �xed sized blocks on the foundation of a block distribution
storage as central component.
Although they are methodologically di�erent, both algorithms share a central
characteristic. This is the utilization of Hwang and Lin's strategy for perform-
ing a series of local merges. These local merges in turn contribute heavily to the
overall runtime. Altogether this explains the observed vicinity of their runtimes.
Further it allows the formulation of the hypothesis that no asymptotically opti-
mal in-place merging algorithm, which is constructed on the top of local merges
using Hwang and Lin's strategy, will deliver signi�cant better runtimes.
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A. Pseudocode and Documentation of Stable-In-Place-Merge

For getting the De�nition of Stable-In-Place-Merge the three code seg-
ments given in Alg. 3, Alg. 4 and Alg. 5 have to be combined sequentially, so
that the outcome forms one single code segment.
Alg. 3 comprises the initialization process. One major subsection of the initial-
ization represents the bu�er extraction, where we handle in the lines 14 to 17
the special case of too few distinct elements as explained in Sec. 3.2.1.

Alg. 4 contains the central while-loop. Each iteration of this while-loop cor-
responds to the processing of a single u-block. The �rst u-block processed by
the while loop can be undersized; all following blocks have the �x size b√mc.
The while loop consists of four major sections that correspond to the four major
tasks associated with the processing of each block.

The variable k keeps the size of the u-blocks and the variable nub the number
of unprocessed u-blocks. delta expresses the shifting of the broken u-block and
is equal to k in the case that there is no broken block. bstart and bend indicate
the bounds of the extracted internal bu�er. The �rst k elements of the bu�er
are used as Kronrod's internal bu�er for local merges and the last n elements of
the bu�er are used as movement imitation bu�er (mi-bu�er). In the special case
of an undersized bu�er all bu�er elements are used as mi-bu�er. The variable
x is a reference to the �rst element of the second u-block. sizeL indicates the
number of u-elements following the �rst u-block. b keeps the split position that
we get as outcome of the binary search. In the context of the binary search we
distinguish among the case that vi is larger or equally sized to that remaining
part of u and the case that it is smaller. The �rst case is handled by the simple
rotation in line 6. The second case is more complex because the block-swap
can change the position of the broken block - this has to be mirrored in the mi-
bu�er as done by the lines 10 to 12 - as well as the shifting of the broken block,
as re�ected by the recalculation of delta in the lines 14 to 17. As additional
outcome of the binary search we get the �nal position of the element A[x−1], so
it has not to participate in any local merge. The rotation in line 8 performs the
�nal placement of A[x − 1] in the second case. The code segment from line 29
to line 40 handles the detection of the minimal block using the mi-bu�er as well
as the front-placement of the minimal block using the technique described by
Mannila and Ukkonen. Line 31 identi�es the position of the minimal block using
the mi-bu�er. Line 32 translates the index to an actual sequence position. In
line 33 we mirror the block swapping of line 35 to line 39 in the mi-bu�er. If the
condition in line 35 is true, then we have the situation that the minimal block
is equal to the broken block and we move the broken block to front position in
the lines 36 to 37. In the other case some complete block is the minimal block
and we move it to the front position in the lines 38 to 39. After line 40 we have
the situation that a complete minimal block of k elements is on position first1.
If there is a new broken block, then the complete block on position first1 is
followed by the front section of this broken block. In the other case it follows a
complete block.

23



The �nal sweeping up (Alg. 5) consists of the bu�er sorting and merging of
the bu�er elements with the already merged outcome of the while-loop. The
sorting of the bu�er is restricted to the �rst k elements (used as Kronrod's
internal bu�er), because the mi-bu�er is already sorted after the termination of
the while loop (Line 32 reconstructs the original position of the elements in the
mi-bu�er area.)

Algorithm 3 Pseudocode of Stable-In-Place-Merge - Part 1

Stable-In-Place-Merge(A, first1, first2, last)
1 // u is in A[first1 : first2− 1], v is in A[first2 : last− 1]
2 m = first2− first1
3 k = bsqrt(m)c
4
5 // Bu�er Extraction
6 bSize = Extract-Buffer(first1, first2, 2 ∗ k)
7 bStart = first1
8 bEnd = first1 + bSize
9 // internal bu�er is in A[bStart : bEnd− 1]
10 if bEnd− bStart == 2 ∗ k
11 // Fullsize Bu�er
12 nub = m/k − 2
13 fullSizeBuffer = true
14 else // Undersized Bu�er
15 nub = bEnd− bStart
16 k = (first2− bEnd)/nub // Adaption of Blocksize
17 fullSizeBuffer = false
18
19 // Final Variable Initializations
20 first1 = bEnd
21 x = first2− (nub ∗ k)
22 if x == first1
23 x = first1 + k
24 nub = nub− 1
25 delta = k
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Algorithm 4 Pseudocode of Stable-In-Place-Merge - Part 2

1 while true
2 // Binary Search and Movement of the Segment vi
3 sizeL = first2− x
4 b = BSearch-Lower(A, first2, last, A[x− 1])
5 if b− first2 ≥ sizeL
6 Block-Rotate(A, x− 1, first2, b)
7 else Block-Swap(A, x, first2, b− first2);
8 Block-Rotate(A, x− 1, x, x+ (b− first2))
9
10 // Mirroring of the Rearragement in the MI-Bu�er
11 shift = ((delta+ b− first2− 1)/k) mod nub
12 Block-Rotate(A, bEnd− nub, shift+ bEnd− nub, bEnd)
13
14 // Recalculation of the Shifting of the Broken Block
15 delta = (b− first2 + delta) mod k
16 if delta == 0
17 delta = k
18
19 // Local Merges
20 if fullSizeBuffer == true
21 Hwang-Lin-Buf(A, first1, x− 1, b− sizeL− 1, bStart)
22 else Hwang-Lin(A, first1, x− 1, b− sizeL− 1)
23
24 // Recalculation of first1 and first2, Check for Termination
25 first1 = b− sizeL; first2 = b
26 if first1 ≥ first2
27 break

28
29 // Detection of the New Minimal Block and its Placement
30 startU = first1 + k − delta // Position of the First Unbroken Block
31 indexOfMinBlock = Minimum(A, bEnd− nub, bEnd)− (bEnd− nub)
32 startOfMinBlock = startU + indexOfMinBlock ∗ k
33 Exchange(A, bEnd− nub, bEnd− nub+ indexOfMinBlock)
34 nub = nub− 1 // Decrease the Number of Unprocessed u-Blocks
35 if startOfMinBlock == first2− delta
36 Block-Swap(A, startU, startOfMinBlock, delta)
37 Block-Rotate(A, first1, startU, first1 + k)
38 else Block-Swap(A, startU, startOfMinBlock, k)
39 Block-Rotate(A, first1, startU, startU + k)
40 x = first1 + k
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Figure 7: Situation when the execution of Alg. 8 reaches line 28

Algorithm 5 Pseudocode of Stable-In-Place-Merge - Part 3

1 // Final Sweeping Up
2 if fullSizeBuffer == true
3 Sort(A, bStart, bStart+ k)
4 Hwang-Lin(A, bStart, bEnd, last)

B. Pseudocode and Documentation of Stable-Optimal-Block-Merge

The de�nition of Stable-Optimal-Block-Merge comprises Alg. 6, Alg. 7
and Alg. 8. The de�nition starts with Alg . 8. The variable k speci�es the size
of all w-blocks as well as v-blocks (see Sec. 4.2), nb keeps the overall number
of these blocks. The code section from line 4 to 14 performs the bd-storage
allocation, as described in Step 1 of Sec. 4.2. At the end of this section we
have a bd-storage, where the �rst part is in A[bds1 : bde1 − 1] and the second
part is in A[bds2 : bde2 − 1]. The allocation of the bd-storage can fail due to a
lack of distinct elements or a ratio greater than

√
m. In this case the algorithm

switches in line 12 immediately to Block-Rotation-Merge and terminates.
The extraction of an internal bu�er consisting of distinct elements happens in
the lines 16 to 22. At the end of the extraction process the bu�er occupies the
section A[bStart : bStart + bSize-1]. bStart′ represents an extended form of
bStart and indicates Hwang and Lin's algorithm by the special value nil to rely
on rotations instead of Kronrod's internal bu�er. k′ keeps an adapted block
size. In the case of an undersized bu�er the variable k′ gets an enlarged block
size computed on the foundation of bSize. Otherwise it is equal to k. In line
22 first1 is redirected to the �rst element of the �rst fully sized w-block. Left
of this fully sized block can be a single undersized block w1 (see Sec. 4.2) that
is merged as suboperation of the �nal sweeping up in the lines 32 to 34. Line
25 calls the procedure for the block rearrangements, where the internal bu�er
is used as movement imitation bu�er. Line 26 calls the function for the local
merges. This function determines the value of lMerged that indicates the left
end of the area merged so far.

Fig. 7 shows the structure of the input when we reach line 28. The binary search
in line 29 computes the subsection of the remaining v that contains elements
that �nally occur left of the internal bu�er. Line 30 rotates this section to the
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Algorithm 6 Pseudocode of procedure for block rearrangements

Rearrange-Blocks(A, first1, first2, last, bStart, bds1, bds2, k)
1 // w2 . . . wx is in A[first1 : first2− 1], v1 . . . vy−1 is in A[first2 : last− 1]
2 // bu�er b is in A[bStart : bStart+ b√mc − 1]
3 // bd-storage s{1|2} is in A[bds{1|2} : bds{1|2}+ b√mc+ bn/√mc − 1]
4
5 bEnd = bStart+ (first2− first1) / k
6 wBlock = first1
7 while first1 < first2
8 if first2 + k < last and A[first2 + k − 1] < A[wBlock]
9 Block-Swap(A, first1, first2, k)
10 Block-Rotation(A, bStart, bStart+ 1, bEnd)
11 if wBlock == first1
12 wBlock = first2
13 first2 = first2 + k
14 else Block-Swap(A, wBlock, first1, k)
15 Exchange(A, bds1, bds2)
16 Exchange(A, bStart, bStart+ (wBlock − first1) / k)
17 bStart = bStart+ 1
18 if bStart < bEnd
19 minIndex = Minimum(A, bStart, bEnd)
20 wBlock = first1 + (minIndex− bStart) ∗ k
21 bds1 = bds1 + 1; bds2 = bds2 + 1
22 first1 = first1 + k

front of the bu�er. Due to this rotation the location of the bu�er may change
and has to be recomputed in line 31. The section from line 32 to line 34 performs
the merging of the single undersized block w1 with its corresponding subsection
of v. The code block from line 35 to 37 performs the sorting of the internal bu�er
as well as its merging with the already merged section right of it. Finally we
assign each bd-storage section its corresponding v-section using a binary search
together with a rotation and merge these v-sections with either parts of the bd-
storage in line 41 and line 42 using the procedure Block-Rotation-Merge.

The procedure Rearrange-Blocks (Alg. 6) implements the block rearrange-
ment as described in Step 3 in Sec. 4.2. In line 5 the di�erence first2− first1
has to be a multiple of the block-size k. The size of the mi-bu�er, which is
located in A[bStart : bEnd − 1], is equal to the number of k-sized blocks in
A[first1 : first2 − 1]. bds1 and bds2 will move throughout the bd-storage in
the context of the while-loop. By exchanging A[bds1] and A[bds2] we will indi-
cate the position of a w-block in the bd-storage. Each iteration of the central
while-loop corresponds to the placement of a single minimal block. During the
execution of the while-loop first1 indicates always the position for the place-
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ment of next minimal block. wBlock is a reference to the current w-block and
first2 is a reference to the current v-block that participate in the placement
decision, represented by the condition in line 8. If the minimal block originates
from v (true-branch), then we swap the �rst k elements originating from v to
the front position (indicated by first1) and mirror the resulting new order of
the unprocessed w-blocks in the mi-bu�er in line 10. Line 13 changes the ref-
erence first2 to the position of the next current v-block. If the minimal block
originates from w (false-branch), then we swap the current w-block to the front
in line 14 and memorize the w-origin of this block in the bd-storage in line 15.
Further we adapt the size of the mi-bu�er in line 17 and determine the location
of the next current w-block using the mi-bu�er in the code block from line 18
to 20. Line 21 and 22 increment bds1, bds2 and first1 as required.

Alg. 7 contains the code for local merges as described in Step 4 of Sec. 4.2. The
argument numWBlocks receives the overall number of w-blocks. The outer
while-loop counts numWBlocks down, where each iteration of the while loop
represents the local merging of a w-block with its corresponding section from
v, which may consist of several v-blocks. index is a counter for the bd-storage
and is used for recognizing and memorizing the positions of w-blocks. For this
purpose the inner while loop from line 5 to line 6 counts index repeatedly down
to the position of the next w-block, where the position of a w-block is indicated
by a pair of bd-elements in wrong order. The processing of the w-blocks start
with the rightmost one and moves forward to the left. vBlock in line 7 becomes a
reference to the �rst v-block following the currently processed w-block. Because
the processing happens block oriented, a sequence of v-blocks may comprise
elements that shall �nally appear in the front of the currently processed w-block
(the maximal number of these elements is always smaller than the block-size k).
The binary search in line 9 identi�es these elements and the rotation in line 10
moves them to the front of the currently processed w-block. Line 11 calls Hwang
and Lin's algorithm in order to merge the current w-block with its counterpart
from v using the internal bu�er starting at bStart. bStart may have the special
value nil in order to indicate that Hwang and Lin's Alg. shall be performed on
the foundation of rotations instead of an internal bu�er. Line 12 adapts last so
that it refers to the leftmost position of the fully merged outcome on the right.
Because the information kept by the bd-storage is not required any longer we
reconstruct the original order of the w-block indicating element-pair in line 13.

Optimization of Final Sweeping Up

The �nal sweeping up (Step 5 in Alg. 8) comprises two calls of Block-
Rotation-Merge, where Block-Rotation-Merge, according to its formal
de�nition in Sec. 4.1 and its implementation in Alg. 2, relies on rotations for
achieving its local merges. The de�nition of Block-Rotation-Merge can be
extended, so that the procedure receives an additional argument that informs
(like bStart in Alg. 6) about an optional internal bu�er. Such an internal
bu�er, assumed it is of su�cient size, can be used for optimizing the local
merges using Hwang and Lin's Alg. in line 9 of Alg. 2. Altogether this allows
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Algorithm 7 Pseudocode of function for local merges

Local-Merges(A, first, last, bStart, bds1, bds2, k, numWBlocks)
1 // A[first : last− 1] contains all blocks in distributed form
2
3 index = ((last− first) / k)− 1
4 while numWBlocks > 0
5 while A[bsd1 + index] < A[bsd2 + index]
6 index = index− 1
7 vBlock = first+ ((index+ 1) ∗ k)
8 if vBlock < last
9 b = Binary-Search(vBlock, last, A[vBlock − k])
10 Block-Rotation(A, vBlock − k, vBlock, b)
11 Hwang-Lin(A, b− k, b, last, bStart)
12 last = b− k
13 Exchange(A, bds1 + index, bds2 + index)
14 numWBlocks = numWBlocks− 1; index = index− 1
15 return last

the following optimization of the code segment spanning from line 35 to 42 in
Alg. 8: First the merging of the bd-storage happens using the extended form
of Block-Rotation-Merge under the aid of the still available internal bu�er
in A[bStart : bStart + bSize − 1] and then the sorting of the internal bu�er
happens, followed by the merging with the already merged outcome right of it.
In the context of the benchmarking we did implement this optimization and
recognized roughly 10% better runtimes for symmetrically sized inputs.
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Algorithm 8 Pseudocode of Stable-Optimal-Block-Merge

Stable-Optimal-Block-Merge(A, first1, first2, last)
1 // u is in A[first1 : first2− 1], v is in A[first2 : last− 1]
2 k = bsqrt(first2− first1)c
3
4 // Step 1 : Block Distribution Storage Assignment
5 nb = b(last− first1)/kc
6 bds1 = first1; bde1 = first1 + nb
7 if bde1 ≥ first2
8 bds2 = first2
9 else bds2 = BSearch-Upper(bde1, first2, A[bde1− 1])
10 bde2 = bds2 + nb
11 if bde2 ≥ first2
12 Block-Rotation-Merge(A, first1, first2, last, k)
13 return

14 first1 = bde2
15
16 // Step 2 : Bu�er Extraction
17 bSize = Extract-Buffer(first1, first2, k)
18 bStart = first1
19 if bSize < k
20 bStart′ = nil; k′ = b(first2− bds1)/bSizec
21 else bStart′ = bStart; k′ = k
22 first1 = (first1 + bSize) + (first2− (first1 + bSize)) mod k′

23
24 // Step 3 and 4 : Block Rearrangement and Local Merges
25 Rearrange-Blocks(first1, first2, last, bStart, bds1, bds2, k′)
26 lMerged = Local-Merges(first1, last, bStart′, bds1, bds2, k′, b(first2− first1)/k′c)
27
28 // Step 5 : Final Sweeping Up
29 b = BSearch-Lower(first1, lMerged, A[bStart− 1])
30 Block-Rotate(A, bStart− 1, first1, b)
31 bStart = bStart+ (b− first1)
32 if bStart′ 6= nil
33 Hwang-Lin-Buf(A, bStart+ bSize, b, lMerged, bStart)
34 else Hwang-Lin-Buf(A, bStart+ bSize, b, lMerged, nil)
35 Sort(A, bStart, bStart+ bSize)
36 Hwang-Lin(A, bStart, bStart+ bSize, last)
37 lMerged = bStart− 1
38
39 b = BSearch-Lower(lMerged− (b− first1), lMerged, A[bde1− 1])
40 Block-Rotate(A, bde1− 1, bde2− 1, b)
41 Block-Rotation-Merge(A, bds1, bde1− 1, bde1− bde2 + b, k)
42 Block-Rotation-Merge(A, b− nb+ 1, b, lMerged, k)
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