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Abstract. We introduce a new stable minimum storage algorithm for
merging that needs O(m log( n

m
+1)) element comparisons, where m and

n are the sizes of the input sequences with m ≤ n. According to the lower
bound for merging, our algorithm is asymptotically optimal regarding the
number of comparisons.
The presented algorithm rearranges the elements to be merged by rota-
tions, where the areas to be rotated are determined by a simple principle
of symmetric comparisons. This style of minimum storage merging is
novel and looks promising.
Our algorithm has a short and transparent definition. Experimental work
has shown that it is very efficient and so might be of high practical in-
terest.

1 Introduction

Merging denotes the operation of rearranging the elements of two adjacent sorted
sequences of sizes m and n, so that the result forms one sorted sequence of m+n
elements. An algorithm merges two adjacent sequences with minimum storage
[1] when it needs O(log2(m + n)) bits additional space at most. This form of
merging represents a weakened form of in-place merging and allows the usage of
a stack that is logarithmically bounded in m + n. Minimum storage merging is
sometimes also referred to as in situ merging. A merging algorithm is regarded
as stable, if it preserves the initial ordering of elements with equal value.
Some lower bounds for merging have been proven so far. The lower bound for the
number of assignments is m+n, because every element may change its position in
the sorted result. The lower bound for the number of comparisons is Ω(m log n

m )
for m ≤ n. This can be proven by a combinatorial inspection combined with an
argumentation using decision trees. An accurate presentation of these bounds is
given by Knuth [1].
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The simple standard merge algorithm is rather inefficient, because it uses lin-
ear extra space and always needs a linear number of comparisons. In particular
the need of extra space motivated the search for efficient in-place merging al-
gorithms. The first publication presenting an in-place merging algorithm was
due to Kronrod [2] in 1969. Kronrod’s unstable merge algorithm is based on a
partition merge strategy and uses an internal buffer as central component. This
strategy has been refined and improved in numerous subsequent publications. A
selection of these publications is [3–10]; an accurate description of the history
and evolution of Kronrod-related algorithms can be found in [6]. The more recent
Kronrod-related publications, like [3] and [6], present quite complex algorithms.
The correctness of these algorithms is by no means immediately clear.
A minimum storage merging algorithm that isn’t Kronrod-related was proposed
by Dudzinski and Dydek [11] in 1981. They presented a divide and conquer
algorithm that is asymptotically optimal regarding the number of comparisons
but nonlinear regarding the number of assignments. This algorithm was cho-
sen as basis of the implementation of the merge_without_buffer-function in the
C++ Standard Template Libraries[12], possibly due to its transparent nature
and short definition.
A further method was proposed by Ellis and Markov in [13], where they in-
troduce a shuffle-based in situ merging strategy. But their algorithm needs
((n + m) log(n + m)) assignments and ((n + m) log(n + m)) comparisons. So,
despite some practical value, the algorithm isn’t optimal from the theoretical
point of view.

We present a new stable minimum storage merging algorithm performing O(m log n
m )

comparisons and O((m+n) log m) assignments for two sequences of size m and n
(m ≤ n). Our algorithm is based on a simple strategy of symmetric comparisons,
which will be explained in detail by an example. We report about some bench-
marking showing that the proposed algorithm is fast and efficient compared to
other minimum storage merging algorithms as well as the standard algorithm.
We will finish with a conclusion, where we give a proposal for further research.

2 The Symmerge Algorithm

We start with a brief introduction of our approach to merging. Let us assume
that we have to merge the two sequences u = (0, 2, 5, 9) and v = (1, 4, 7, 8).
When we compare the input with the sorted result, we can see that in the result
the last two elements of u occur on positions belonging to v, and the first two
elements of v appear on positions belonging to u (see Fig. 1 a)). So, 2 elements
were exchanged between u and v. The kernel of our algorithm is to compute
this number of side-changing elements efficiently and then to exchange such a
number of elements. More accurately, if we have to exchange n (n ≥ 0) elements
between sequences u and v, we move the n greatest elements from u to v and
the n smallest elements from v to u, where the exchange of elements is realized
by a rotation. Then by recursive application of this technique to the arising
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Fig. 1. Symmerge example

subsequences we get a sorted result. Fig. 1 illustrates this approach to merging
for our above example.

We will now focus on the process of determining the number of elements to be
exchanged. This number can be determined by a process of symmetrical com-
parisons of elements that happens according to the following principle:
We start at the leftmost element in u and at the rightmost element in v and
compare the elements at these positions. We continue doing so by symmetri-
cally comparing element-pairs from the outsides to the middle. Fig. 1 b) shows
the resulting pattern of mutual comparisons for our example. There can occur
at most one position, where the relation between the compared elements alters
from ’not greater’ to ’greater’. In Figure 1 b) two thick lines mark this position.
These thick lines determine the number of side-changing elements as well as the
bounds for the rotation mentioned above.
Due to this technique of symmetric comparisons we will call our algorithm Sym-
merge. Please note, if the bounds are on the leftmost and rightmost position,
this means all elements of u are greater than all elements of v, we exchange u
and v and get immediately a sorted result. Conversely, if both bounds meet in
the middle we terminate immediately, because uv is then already sorted. So our
algorithm can take advantage of the sortedness of the input sequences.
So far we introduced the computation of the number of side-changing elements as
linear process of symmetric comparisons. But this computation may also happen
in the style of a binary search. Then only blog(min(|u| , |v|))c + 1 comparisons
are necessary to compute the number of side-changing elements.

2.1 Formal definition

Let u and v be two adjacent ascending sorted sequences. We define u ≤ v (u < v)
iff. x ≤ y (x < y) for all elements x ∈ u and for all elements y ∈ v.
We merge u and v as follows:

If |u| ≤ |v|, then
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Fig. 2. Illustration of Symmerge

(a1) we decompose v into v1wv2 such that |w| = |u| and either |v2| = |v1|
or |v2| = |v1|+ 1.

(a2) we decompose u into u1u2 (|u1| ≥ 0, |u2| ≥ 0) and w into w1w2

(|w1| ≥ 0, |w2| ≥ 0) such that |u1| = |w2|, |u2| = |w1| and u1 ≤ w2,
u2 > w1.

(a3) we recursively merge u1 with v1w1 as well as u2 with w2v2. Let u′

and v′ be the resulting sequences, respectively.

else

(b1) we decompose u into u1wu2 such that |w| = |v| and either |u2| = |u1|
or |u2| = |u1|+ 1.

(b2) we decompose v into v1v2 (|v1| ≥ 0, |v2| ≥ 0) and w into w1w2

(|w1| ≥ 0, |w2| ≥ 0) such that |v1| = |w2|, |v2| = |w1| and w1 ≤ v2,
w2 > v1.

(b3) we recursively merge u1w1 with v1 as well as w2u2 with v2. Let u′

and v′ be the resulting sequences, respectively.

u′v′ then contains all elements of u and v in sorted order.

Fig. 2 contains an accompanying graphical description of the process described
above. The steps (a1) and (b1) manage the situation of input sequences of dif-
ferent length by cutting a subsection w in the middle of the longer sequence
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Algorithm 1 Symmerge algorithm
Symmerge (A, first1, first2, last)

if first1 < first2 and first2 < last then
m ← (first1 + last)/2
n ← m + first2
if first2 > m then

start ← Bsearch (A, n - last, m, n - 1)
else

start ← Bsearch (A, first1, first2, n - 1)
end ← n - start
Rotate (A, start, first2, end)
Symmerge (A, first1, start, m)
Symmerge (A, m, end, last)

Bsearch (A, l, r, p)
while l < r

m ← (l + r) / 2
if A[m] ≤A[p - m]

then l ← m + 1 ;
else r ← m;

return l

as “active area”. This active area has the same size as the shorter of either in-
put sequences. The decomposition formulated by the steps (a2) and (b2) can
be achieved efficiently by applying the principle of the symmetric comparisons
between the shorter sequence u (or v) and the active area w. After the decompo-
sition step (a2) (or (b2)), the subsequence u2v1w1(or w2u2v1) is rotated so that
we get the subsequences u1v1w1 and u2w2v2(u1w1v1 and w2u2v2). The treat-
ment of pairs of equal elements as part of the “outer blocks” (u1, w2 in (a2) and
w1, v2 in (b2)) avoids the exchange of equal elements and so any reordering of
these.

Corollary 1. Symmerge is stable.

Algorithm 1 gives an implementation of the Symmerge algorithm in Pseu-
docode. The Pseudocode conventions are taken from [14].

3 Worst Case Complexity

We will now investigate the worst case complexity of Symmerge regarding the
number of comparisons and assignments.
Unless stated otherwise, let us denote m = |u|, n = |v|, m ≤ n, k = blog mc
and let mi

j and ni
j denote the minimum and maximum of lengths of sequences
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Fig. 3. Maximum spanning case

merging on the ith recursion group for i = 0, 1, . . . , k and j = 1, 2, 3, . . . , 2i

(initially m0
1 = m and n0

1 = n). A recursion group consists of one or several
recursion levels and comprises 2i(i = 0, 1, . . . , k) subsequence mergings at most
(see figure 3). In the special case where each subsequence merging always triggers
two nonempty recursive calls - in this case the recursion depth becomes exactly
k = blog mc -, recursion groups and recursion levels are identical, but in general
for the recursion depth dp it holds k = blog mc ≤ dp ≤ m. Further, for each
recursion group i = 0, 1, . . . , k, it holds

∑2i

j=1(m
i
j + ni

j) = m + n.

Lemma 1. ([11] Lemma 3.1) If k =
∑2i

j=1 kj for any kj > 0 and integer i ≥ 0,

then
∑2i

j=1 log kj ≤ 2i log(k/2i).

Theorem 1. The Symmerge algorithm needs O(m log(n/m+1)) comparisons.

Proof. The number of comparisons for the binary search for the recursion group 0
is equal to blog mc+1≤ blog m + nc+1. For the recursion group 1 we need at most
log(m1

1+n1
1)+1+log(m1

2+n1
2)+1 comparisons, and so on. For the recursion group

i we need at most
∑2i

j=1 log(mi
j + ni

j) + 2i comparisons. Since
∑2i

j=1(m
i
j + ni

j) =

m+n, it holds
∑2i

j=1 log(mi
j+ni

j)+2i ≤ 2i log((m+n)/2i)+2i by Lemma 1. So the
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overall number of comparisons for all k + 1 recursion groups is not greater than∑k
i=0(2

i+2i log((m+n)/2i)) = 2k+1−1+(2k+1−1) log(m+n)−
∑k

i=0 i2i. Since∑k
i=0 i2i = (k−1)2k+1+2, algorithm Symmerge needs at most 2k+1−1+(2k+1−

1) log(m+n)−(k−1)2k+1−2 ≤ 2k+1 log(m+n)−k2k+1+2k+2−log(m+n)−3 ≤
2m(log m+n

m + 2)− log(m + n)− 3 = O(m log( n
m + 1)) comparisons. ut

Theorem 2. The recursion-depth of Symmerge is bounded by dlog(m + n)e.

Proof. The decomposition steps (1a) and (1b) satisfy the property max{|u1| ,
|u2| , |v1| , |v2| , |w1| , |w2|} ≤ (|u|+ |v|)/2. So, on recursion level dlog(m + n)e all
remaining unmerged subsequences are of length 1. ut

Corollary 2. Symmerge is a minimum storage algorithm.

In [11] Dudzinski and Dydek presented an optimal in-place rotation (sequence
exchange) algorithm, that needs m + n + gcd(m,n) element assignments for
exchanging two sequences of lengths m and n.

Theorem 3. If we take the rotation algorithm given in [11], then Symmerge
requires O((m + n) log m) element assignments.

Proof. Inside each recursion group i = 0, 1, . . . , k disjoint parts of u are merged
with disjoint parts of v. Hence each recursion group i comprises at most

∑i
j=1((m

i
j+

ni
j) + gcd(mi

j , n
i
j)) ≤ m + n +

∑2i

j=1 mi
j = 2m + n assignments resulted from

rotations. So the overall number of assignments for all k recursion groups is less
than (2m + n)(k + 1) = (2m + n) log m + 2m + n = O((m + n) log m). ut

4 Practical Results

We did some experimental work with the unfolded version of the Symmerge al-
gorithm (see Sect. 4.1) and compared it with the implementations of three other
merging algorithms. As first competitor we chose the merge_without_buffer-
function contained in the C++ Standard Template Libraries (STL) [12]. This
function implements a modified version of the Recmerge algorithm devised by
Dudzinski and Dydek [11]. The STL-algorithm operates in a mirrored style com-
pared to Recmerge and doesn’t release one element in each recursion step. Fig.
4 gives a graphical description of the differences. We preferred the STL-variant
because of its significance in practice.
The second competitor was taken from [15], where a simplified implementation of
the in-place algorithm from Mannila & Ukkonen [7] is given. Unlike the original
algorithm the simplified version relies on a small external buffer whose length is
restricted by the square root of the input size.
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Fig. 4. Recmerge versus STL-merge_without_buffer

As third competitor we took the classical standard algorithm. We chose ran-
domly generated sequences of integers as input. The results of our evaluation
are contained in Table 1, each entry shows a mean value of 30 runs with differ-
ent data. We took a state of the art hardware platform with 2.4 Ghz processor
speed and 512MB main memory; all coding was done in the C-programming
language. Each comparison was accompanied by a slight artificial delay in order
to strengthen the impact of comparisons on the execution time.
It can be read from the table that the STL-algorithm seems to be less efficient
than Symmerge. However both algorithm show an accurate “O(m log(n/m))-
behavior”.
Symmerge and Recmerge rely on rotations as encapsulated operations for el-
ement reordering. There are several algorithms that achieve rotations, three of
them are presented and evaluated by Bentley in [16]. The evaluation by Bentley
showed, that a rotation algorithm proposed by Dudzinski and Dydek in [11] is
rather slow compared to its alternatives, although it is optimal with respect to
the number of assignments. Nevertheless this algorithm was chosen in the STL
for the implementation of rotations. We exchanged the rotation algorithm of the
merge_without_buffer-function (STL) by one of its faster alternatives and com-
pared the modified function with its original. The result of this comparisons is
given in the columns STLmodified and STLorig of Table 1. From this comparison
it can be read that the chosen rotation algorithm is one of the driving factors
regarding the performance of Recmerge, and so of Symmerge.
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n m Symmerge STLmodified STLorig Mannila & Ukkonen Standard
#comp te #comp te te #comp te #comp te

221 221 5217738 1831 6020121 2263 3408 7464568 1483 4194177 743
221 218 1348902 635 1541524 751 1398 5615225 1116 2359159 415
221 215 264279 298 295063 334 815 5301311 1049 2129765 372
221 212 45227 211 49272 231 607 4660337 942 2100744 373
223 29 8198 680 8711 777 2735 14909001 3101 8374604 1503
223 26 1212 579 1279 673 1254 14297482 2996 8292870 1496
223 23 170 465 179 548 196 14202829 2967 7544491 1402
223 20 23 191 24 222 31 14188252 2959 4040739 832
te : Execution time in ms, #comp : Number of comp., m,n : Lengths of inp. seq.

Table 1. Practical comparison of various merging algorithms

4.1 Optimisations on Pseudocode-Level

We would like to remark two optimisations of Symmerge on Pseudocode-Level
that can be applied for decreasing the execution time without changing the num-
ber of comparisons and element assignments carried out. First of all, “needless
recursive calls”, i.e. recursive calls with m = 0 or n = 0, can be avoided by
unfolding the algorithm. For the unfolded version the caller has to ensure that
Symmerge is called with m ≥ 1 and n ≥ 1. A second optimisation is the treat-
ment of the case m = 1 and n ≥ 1 as loop-driven direct binary insertion. This
avoids blog n + 1c recursive calls of the algorithm in this special case.
The impact of both optimizations on the execution time depends on the se-
quences to be merged. In our environment we could observe a time-reduction up
to 25%.

5 Conclusion

We presented an efficient minimum storage merging algorithm called Symmerge.
Our algorithm uses a novel technique for merging that relies on symmetric com-
parisons as central operation. We could prove that our algorithm is asymptot-
ically optimal regarding the number of necessary comparisons. Practical eval-
uation could show that it is fast and efficient. So, Symmerge is not only of
theoretical but also of practical interest.
Finally let us note that our algorithm, unlike the standard algorithm, can take
advantage of the sortedness of the input sequences. If the overall input sequence
is in sorted order, i.e. u ≤ v for two sequences u and v of sizes m and n, Sym-
merge needs only O(log(m + n)) comparisons and hence becomes sub-linear.
This in turn reflects to a Symmerge based Merge-sort, which speeds up for pre-
sorted sequences as well. Mehlhorn showed in [17] that sequences of size n with
O(n) inversions, i.e. with O(n) pairs of elements that are not in sorted order,
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can be sorted in time O(n). How many comparisons does a Symmerge based
Merge-sort need depending on the number of inversions? We would like to leave
this question to the further research.
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