
Eliminating left-recursion: three steps

Recall: A CFG is left-recursive if it includes a variable A s.t.

A
+⇒ Aα .

We eliminate left-recursion in three steps.

• eliminate ǫ-productions (impossible to generate ǫ!)

• eliminate cycles (A +⇒ A)

• eliminate left-recursion

So we’ve got some constructions to learn.

Let’s try an example of eliminating ǫ-productions before we

specify a construction. . .

1

Consider the CFG below.

S → XX | Y

X → aXb | ǫ

Y → aY b | Z

Z → bZa | ǫ

Notice that

S
∗⇒ ǫ X

∗⇒ ǫ Y
∗⇒ ǫ Z

∗⇒ ǫ

Hence, all the variables in this grammar are what we will call

“nullable.” So in order to eliminate the ǫ-productions in this

grammar, we must alter the grammar to take into account the

fact that instances of these variables in a derivation may

eventually be replaced by ǫ. So, for instance, we will replace

Z → bZa | ǫ
with

Z → bZa | ba .

After elimination of ǫ-productions, we obtain

S → XX | X | Y

X → aXb | ab

Y → aY b | ab | Z

Z → bZa | ba

2

Eliminating ǫ-productions

Given a CFG G = (V, Σ, S, P), a variable A ∈ V is nullable if

A
∗⇒ ǫ .

The main step in the ǫ-production elimination algorithm then

is that the set P of productions is replaced with the set Pǫ of

all productions

A → β

s.t. A 6= β, β 6= ǫ, and P includes a production

A → α

s.t. β can be obtained from α by deleting zero or more

occurrences of nullable variables.

Example Applying ǫ-production elimination to the CFG

G = ({S}, {a, b}, S, { S → aSb | ǫ })

yields the CFG

Gǫ = ({S}, {a, b}, S, { S → aSb | ab }) .

3

A is nullable if A
∗⇒ ǫ .

Pǫ is the set of all productions

A → β

s.t. A 6= β, β 6= ǫ, and P includes a production

A → α

s.t. β can be obtained from α by deleting zero or more

occurrences of nullable variables.

Example Let’s apply ǫ-production elimination to

S → XZ

X → aXb | ǫ

Z → aZ | ZX | ǫ

What are the nullable variables?

What are the new productions?

4

Eliminating ǫ-productions can greatly increase the size of a

grammar.

Example Eliminating ǫ-productions from

S → A1A2 · · ·An

A1 → ǫ

A2 → ǫ
...

An → ǫ

increases the number of productions from n + 1 to 2n − 1.

What about ambiguity?

Claim If G is unambiguous, so is Gǫ.

5

Eliminating cycles

A grammar has a cycle if there is a variable A s.t.

A
+⇒ A .

We’ll call such variables cyclic.

If a grammar has no ǫ-productions, then all cycles can be

eliminated from G without affecting the language generated,

using a construction we will specify in a moment.

Let’s try an example first. Consider the grammar with

productions

S → X | Xb | SS

X → S | a

We have S
+⇒ S and X

+⇒ X .

We can eliminate occurrences of cyclic variables as rhs’s of

productions, thus eliminating cycles.

S → a | Xb | SS

X → Xb | SS | a

6

Given a CFG G = (V, Σ, S, P), the main step in the cycle

elimination algorithm is to replace the set P of productions

with the set Pc of productions obtained from P by replacing

• each production A → B where B is cyclic

• with new productions A → α s.t. α is not a cyclic variable

and there is a production C → α s.t. B
∗⇒ C.

The resulting CFG is Gc = (V, Σ, S, Pc).

Note: You can probably convince yourself that Pc has no

cycles, and that Gc generates the same languages as G.

Let’s try the construction. . .

S → X | Xb | Y a

X → Y | b

Y → X | a

Which variables are cyclic?

Which productions will be replaced?

With what?

7

Replace the set P of productions with the set Pc of

productions obtained from P by replacing

• each production A → B where B is cyclic

• with new productions A → α s.t. α is not a cyclic variable

and there is a production C → α s.t. B
∗⇒ C.

Let’s consider an example illustrating the importance of

requiring that there be no ǫ-productions.

S → a | SS | ǫ

Notice that S is a cyclic variable, since

S ⇒ SS ⇒ S .

But S never appears as the rhs of a production, so the

construction does nothing.

(BTW What does the ǫ-elimination algorithm do to this

grammar?)

8

Eliminating “immediate” left recursion

Let’s begin with an easy example, already considered:

A → Ab | b

This grammar is left-recursive, since

A
+⇒ Ab .

In this case, we can eliminate left recursion as follows:

A → bA′

A′ → bA′ | ǫ

More generally, we can eliminate “immediate” left recursion as

follows. If

A → Aα1 | Aα2 | · · · | Aαm | β1 | β2| · · · | βn

represents all the A-productions of the grammar, and no βi

begins with A, then we can replace these A-productions by

A → β1A
′ | β2A

′| · · · | βnA
′

A′ → α1A
′ | α2A

′ | · · · | αmA′ | ǫ

9

If

A → Aα1 | Aα2 | · · · | Aαm | β1 | β2| · · · | βn

represents all the A-productions of the grammar, and no βi

begins with A, then we can replace these A-productions by

A → β1A
′ | β2A

′| · · · | βnA
′

A′ → α1A
′ | α2A

′ | · · · | αmA′ | ǫ

If our grammar has S-productions

S → SX | SSb | XS | a

we can replace them with

S → XSS′ | aS′

S′ → XS′ | SbS′| ǫ

Notice that this construction can fail to eliminate

left-recursion if we have the production

A → A !

For instance,

A → A | Ab | b

becomes

A → bA′

A′ → A′ | bA′ | ǫ

10

If

A → Aα1 | Aα2 | · · · | Aαm | β1 | β2| · · · | βn

represents all the A-productions of the grammar, and no βi

begins with A, then we can replace these A-productions by

A → β1A
′ | β2A

′| · · · | βnA
′

A′ → α1A
′ | α2A

′ | · · · | αmA′ | ǫ

Another interesting special case. What if there are no βi’s?

For example,

A → AA | Ab .

Then everything that can be derived from A has a variable in

it, so A cannot appear in a derivation of a sentence.

And the construction handles this in an interesting way,

yielding

A′ → AA′ | bA′ | ǫ

but no A-productions.

11

If

A → Aα1 | Aα2 | · · · | Aαm | β1 | β2| · · · | βn

represents all the A-productions of the grammar, and no βi

begins with A, then we can replace these A-productions by

A → β1A
′ | β2A

′| · · · | βnA
′

A′ → α1A
′ | α2A

′ | · · · | αmA′ | ǫ

Notice also that this construction works only “locally”:

That is, indirect recursion is not eliminated.

For example, if we apply this construction to both variables in

S → SX | SSb | XS | a

X → Sa | Xb

we obtain

S → XSS′ | aS′

S′ → XS′ | SbS′ | ǫ

X → SaX ′

X ′ → bX ′ | ǫ

and so have S
+⇒ SaX ′SS′, for instance.

12

Here’s an algorithm that eliminates all left-recursion for any

CFG without ǫ-productions and without cycles.

Arrange the variables in some order A1, A2, . . . , An.

for i := 1 to n do begin

for j := 1 to i − 1 do begin

replace each production of the form Ai → Ajγ

by the productions Ai → δ1γ | δ2γ | · · · | δkγ

where Aj → δ1 | δ2 | · · · | δk are all the current Aj-productions;

end

eliminate the immediate left recursion among the Ai-productions;

end

Consider the grammar

S → SX | SSb | XS | a

X → Xb | Sa | b

Let’s order the variables S, X :

The first time through we simply eliminate immediate left

recursion in S-productions, yielding

S → XSS′ | aS′

S′ → XS′ | SbS′| ǫ

X → Xb | Sa | b

13

Arrange the variables in some order A1, A2, . . . , An.
for i := 1 to n do begin

for j := 1 to i − 1 do begin

replace each production of the form Ai → Ajγ

by the productions Ai → δ1γ | δ2γ | · · · | δkγ

where Aj → δ1 | δ2 | · · · | δk are all the current Aj-productions;

end

eliminate the immediate left recursion among the Ai-productions;

end

So at this point we have grammar

S → XSS′ | aS′

S′ → XS′ | SbS′| ǫ

X → Xb | Sa | b

and the next obligation is to replace the production

X → Sa

with the productions

X → XSS′a | aS′a .

We then eliminate immediate left recursion among

X → XSS′a | aS′a | Xb | b .

14

Eliminating immediate left recursion among

X → XSS′a | Xb | b | aS′a

yields

X → bX ′ | aS′aX ′

X ′ → SS′aX ′ | bX ′ | ǫ

So the final result is

S → XSS′ | aS′

S′ → XS′ | SbS′| ǫ

X → bX ′ | aS′aX ′

X ′ → SS′aX ′ | bX ′ | ǫ

15

Let’s look at examples showing that this algorithm can fail if

the grammar has ǫ-productions or cycles.

In the simplest case, when there is only one variable, call it X ,

the presence of a cycle implies that the grammar includes the

production

X → X .

Moreover, the whole left recursion elimination algorithm

reduces to elimination of immediate left recursion among

X-productions.

And we have previously observed that our construction for

immediate left recursion elimination is no good in the presence

of X → X .

For example, if the grammar is

X → X | a

the construction for eliminating immediate left recursion yields

X → aX ′

X ′ → X ′

What about more complex cycles?

16

S → X | b

X → S | a

Try ordering S, X .

First step: eliminate immediate left recursion in

S-productions.

There is none.

Next: replace production

X → S

with productions

X → X | b .

It remains only to eliminate immediate left recursion in the

current X-productions, which are

X → X | b | a .

As before, the presence of production X → X breaks our

construction — which yields

X → bX ′ | aX ′

X ′ → X ′

17

Here’s an example with an ǫ-production and no cycles:

S → XSa | b

X → ǫ

Try order S, X .

First step: eliminate immediate left recursion in

S-productions.

There is none.

Next: replace any X-productions whose rhs begins with S.

There are none.

Last: eliminate immediate left recursion in the current

X-productions.

There is none.

So our left-recursion elimination algorithm leaves the grammar

unchanged.

Yet S
+⇒ Sa, so the grammar is left-recursive.

18

So now we can take any grammar and eliminate left-recursion

(in three steps), making it suitable for top-down parsing (with

backtracking!).

Notice that this works even for ambiguous grammars.

Next time we’ll define the main component of a top-down

parser — the parsing table.

But practically speaking, we would also like to avoid

backtracking.

Next time we’ll see how this can be done for top-down parsing.

We’ll define the class of LL(1) grammars, suitable for

predictive parsing.

19

For next time

Read 4.4.

20

