Eliminating left-recursion: three steps

Recall: A CFQG is left-recursive if it includes a variable A s.t.

A Aa.

We eliminate left-recursion in three steps.

e climinate e-productions (impossible to generate €!)
e climinate cycles (A = A)

e climinate left-recursion

So we've got some constructions to learn.

Let’s try an example of eliminating e-productions before we

specify a construction. ..

Consider the CFG below.

S — XX|Y
X — aXb|e
Y — aYb| Z
Z — bZa|e

Notice that

S5 e X 3¢ Y 2 ¢ Z 5 e
Hence, all the variables in this grammar are what we will call
“nullable.” So in order to eliminate the e-productions in this
grammar, we must alter the grammar to take into account the
fact that instances of these variables in a derivation may
eventually be replaced by €. So, for instance, we will replace

Z —bZale
with

Z —bZa | ba.

After elimination of e-productions, we obtain

XX|X|Y
aXb | ab
aYb|ab| Z
bZa | ba

N < X
A

Eliminating e-productions

Given a CFG G = (V, X, S, P), a variable A € V' is nullable if
AS e,
The main step in the e-production elimination algorithm then

is that the set P of productions is replaced with the set P, of

all productions

A—j
st. A#£ 3, 8 # e and P includes a production

A—«

s.t. 0 can be obtained from « by deleting zero or more

occurrences of nullable variables.

Example Applying e-production elimination to the CFG
G =({S}.{a.b},5,{ S —aSb|c})
yields the CFG

Ge= ({5},{a,b},5,{S —aSb|ab}).

A is nullable if A = €.

P. is the set of all productions
A—p

st. A # B, B # €, and P includes a production
A—a

s.t. B can be obtained from « by deleting zero or more

occurrences of nullable variables.

Example Let’s apply e-production elimination to

S — XZ
X — aXb|e
Z — aZ | ZX |e€

What are the nullable variables?

What are the new productions?

Eliminating e-productions can greatly increase the size of a

gramimar.

Example Eliminating e-productions from

S — AjAy--- A,
Ay

Ay — ¢

l

€

A, — €

increases the number of productions from n + 1 to 2" — 1.

What about ambiguity?

Claim If G is unambiguous, so is G..

Eliminating cycles

A grammar has a cycle if there is a variable A s.t.
A A

We'll call such variables cyclic.

If a grammar has no e-productions, then all cycles can be
eliminated from G without affecting the language generated,

using a construction we will specify in a moment.

Let’s try an example first. Consider the grammar with
productions

S — X |Xb|SS

X — Sla

We have S = S and X = X.

We can eliminate occurrences of cyclic variables as rhs’s of

productions, thus eliminating cycles.

S — a| Xb|SS
X — Xb|SS|a

Given a CFG G = (V, X, S, P), the main step in the cycle
elimination algorithm is to replace the set P of productions

with the set P. of productions obtained from P by replacing

e cach production A — B where B is cyclic

e with new productions A — « s.t. « is not a cyclic variable

and there is a production C — a st. B = C.
The resulting CFG is G. = (V, %X, S, P,).

Note: You can probably convince yourself that P. has no

cycles, and that G. generates the same languages as G.

Let’s try the construction. ..

S—>X‘Xb|Ya
X—)Y‘b
Y—>X‘a

Which variables are cyclic?
Which productions will be replaced?

With what?

Replace the set P of productions with the set P. of

productions obtained from P by replacing

e cach production A — B where B is cyclic

e with new productions A — « s.t. « is not a cyclic variable

and there is a production C' — a s.t. B = C.

Let’s consider an example illustrating the importance of

requiring that there be no e-productions.

S—al|SS|e

Notice that S is a cyclic variable, since

S=955=5.

But S never appears as the rhs of a production, so the

construction does nothing.

(BTW What does the e-elimination algorithm do to this

grammar?)

Eliminating “immediate” left recursion

Let’s begin with an easy example, already considered:

A— Ab|b

This grammar is left-recursive, since

A= Ab.

In this case, we can eliminate left recursion as follows:

A — bA
A — bA | e

More generally, we can eliminate “immediate” left recursion as
follows. If

A—>AO[1|AO£2|""AO5m‘5l|ﬁ?|"'|ﬁn

represents all the A-productions of the grammar, and no j3;

begins with A, then we can replace these A-productions by

A — BA| A | B A
A — A A || anA | €

If
A — Aoy | Aag |-+ | Ay, | Br | Bof - | Ba
represents all the A-productions of the grammar, and no 3;
begins with A, then we can replace these A-productions by
A = LA | BA--| B A
A — OélA/ ‘ O{QA, |‘ OémA/ ‘ €

If our grammar has S-productions
S—SX|SSh| XS |a
we can replace them with

S — XSS'|aS
S — XS'| SbS| €

Notice that this construction can fail to eliminate

left-recursion if we have the production

A— Al
For instance,
A—A|Ab|D
becomes
A — bA

A — A |bA | e

10

If
A—>A061|A062|"'\A04m\51|52""|5n

represents all the A-productions of the grammar, and no j3;

begins with A, then we can replace these A-productions by

A — LA | BA--| B A
A = A | apA || amA' | €

Another interesting special case. What if there are no 3;’s?

For example,
A— AA| Ab.

Then everything that can be derived from A has a variable in

it, so A cannot appear in a derivation of a sentence.

And the construction handles this in an interesting way,
yielding
A — AA | DA | €

but no A-productions.

11

If
A—>A061|A062|"'\A04m\51|52""|5n

represents all the A-productions of the grammar, and no j3;

begins with A, then we can replace these A-productions by

A = BA | BA--| BA
A = A | apA || amA' | €

Notice also that this construction works only “locally”:
That is, indirect recursion is not eliminated.

For example, if we apply this construction to both variables in

S — SX|SSb|XS|a

X — Sal| Xb
we obtain
S — XSS as
S — XS] SbS | e
X — SaX'
X' — bX'|e€

and so have S =& SaX'SS’, for instance.

12

Here’s an algorithm that eliminates all left-recursion for any Arrange the variables in some order Ay, Ao, ..., A,.

CFG without e-productions and without cycles. for i := 1 ton do begin
for j :=1toi—1 do begin
Arrange the variables in some order Ay, Ao, ..., A,. replace each production of the form A; — Ajy
by the productions A; — ;v | doy |-+ | dgy
for i := 1 ton do begin where A; — &1 | 89 |-+ | J) are all the current A;-productions;
for j :=1toi— 1 do begin end

replace each production of the form A; — A;y eliminate the immediate left recursion among the A;-productions;

by the productions A; — 017y | da7y |-+ | dry d
en
where A; — 01 | 0 |- --| 0x are all the current A;-productions;
end So at this point we have grammar

eliminate the immediate left recursion among the A;-productions;

S — X85 | as
S — XS] SbY| e
Consider the grammar X — Xb|Salb
S — SX|SSb|XS|a
X — Xb|Salb

end

and the next obligation is to replace the production

X — Sa

Let’s order th iabl X: . .
et’s order the variables 5, with the productions

The first time through we simply eliminate immediate left X = XSS | aSa.
recursion in S-productions, yielding

S — XS89 |as
S — XS] SbY| e X — XSSa|aSa| Xb|b.
X — Xb|Salb

We then eliminate immediate left recursion among

13 14

Eliminating immediate left recursion among
X — XSSa| Xb|b|aSa

yields
X
X/

!

bX' | aS'aX’
SS'aX' | bX' | €

l

So the final result is

S — XSS5 | aSs

S — XS SbY| e
X — bX'|aSaX'
X' — SSaX'|bX' | €

15

Let’s look at examples showing that this algorithm can fail if

the grammar has e-productions or cycles.

In the simplest case, when there is only one variable, call it X,
the presence of a cycle implies that the grammar includes the
production

X —-X.

Moreover, the whole left recursion elimination algorithm
reduces to elimination of immediate left recursion among

X-productions.

And we have previously observed that our construction for
immediate left recursion elimination is no good in the presence
of X — X.

For example, if the grammar is
X—=>X]a

the construction for eliminating immediate left recursion yields
X — aX’
X - X

What about more complex cycles?

16

S — X|b
X — Sla

Try ordering S, X.

First step: eliminate immediate left recursion in

S-productions.
There is none.

Next: replace production

with productions
X—=X]|b.

[t remains only to eliminate immediate left recursion in the

current X-productions, which are
X—=X|b|a.

As before, the presence of production X — X breaks our

construction — which yields

X — bX'|aX’
X - X'

17

Here’s an example with an e-production and no cycles:

S — XSal|b
X — ¢

Try order S, X.

First step: eliminate immediate left recursion in

S-productions.

There is none.

Next: replace any X-productions whose rhs begins with S.
There are none.

Last: eliminate immediate left recursion in the current

X-productions.
There is none.

So our left-recursion elimination algorithm leaves the grammar

unchanged.

Yet S = Sa, so the grammar is left-recursive.

18

So now we can take any grammar and eliminate left-recursion
(in three steps), making it suitable for top-down parsing (with

backtracking!).

Notice that this works even for ambiguous grammars.

Next time we’ll define the main component of a top-down

parser — the parsing table.

But practically speaking, we would also like to avoid

backtracking.

Next time we’ll see how this can be done for top-down parsing,.

We'll define the class of LL(1) grammars, suitable for

predictive parsing.

19

For next time

Read 4.4.

20

